专题1选择题100题-2023-2024学年六年级数学上册期末备考真题分类汇编(青岛版,山东地区专版)
展开
这是一份专题1选择题100题-2023-2024学年六年级数学上册期末备考真题分类汇编(青岛版,山东地区专版),共52页。试卷主要包含了选择题等内容,欢迎下载使用。
1.(2023上·山东潍坊·六年级统考期末)自行车的车轮滚动一周,所行路程是车轮的( )。
A.周长B.直径C.半径
2.(2023上·山东潍坊·六年级统考期末)已知,那么( )。
A.0.8B.2.4C.7.2
3.(2023上·山东枣庄·六年级统考期末)如果圆的半径扩大到原来的3倍,那么它的面积就扩大到( )。
A.原来的3倍B.原来的6倍C.原来的9倍
4.(2023上·山东德州·六年级统考期末)已知A÷B=,则(A÷2)∶(B÷2)=( )。
A.B.C.D.
5.(2023上·山东德州·六年级统考期末)直角三角形一个锐角与直角的比是1∶4,那么这个锐角与另一个锐角的比是( )。
A.1∶3B.3∶1C.3∶4D.4∶3
6.(2023上·山东滨州·六年级统考期末)张玲从下面的某个盒子里摸了10次球(每次摸出后再放入盒中摇匀),摸球情况为:红球4次,黄球6次。她最有可能是从( )盒子里摸的球。
A.7个黄球,3个红球B.5个黄球,5个红球C.4个黄球,6个红球D. 2个黄球,8个红球
7.(2023上·山东青岛·六年级校考期末)有两根10米长的丝带,从第一根上截去它的做中国结,从第二根上截去米做礼盒装饰。余下部分( )。
A.第一根长B.第二根长C.一样长D.无法确定
8.(2023上·山东滨州·六年级统考期末)下面的百分率中,( )一定小于100%。
A.树苗的成活率B.小麦的出粉率
C.一种零件的合格率D.六年级学生的出勤率
9.(2022上·山东德州·六年级校考期末)下面事件中不确定的是( )。
A.地球绕着太阳转B.太阳从西边出来
C.把一个铁块放入水中,铁块沉底。D.明天一定下雨
10.(2022上·山东枣庄·六年级统考期末)下面的阴影部分是扇形的是( )。
A.B.C.
11.(2022上·山东青岛·六年级校考期末)一种钢笔有4支装和6支装两种不同的包装,张老师要购买26支这样的钢笔,可以有( )种不同的选择方法。
A.1B.2C.3
12.(2022上·山东潍坊·六年级统考期末)小明不小心把12.5%的百分号忘记写了,这相当于把这个数( )。
A.扩大到原来的100倍B.缩小到原来的C.无法确定
13.(2023上·山东青岛·六年级校考期末)已知,且、、都不等于零,那么、、三个数中,( )最大。
A.B.C.
14.(2023上·山东德州·六年级统考期末)美术和音乐两个社团的女生人数都占本社团总人数的60%。哪个社团的女生人数多?( )
A.美术社团多B.一样多C.音乐社团多D.无法确定
15.(2022上·山东潍坊·六年级统考期末)若a是非零自然数,下列算式中的计算结果最大的是( )。
A.a÷B.a×C.a×D.a÷
16.(2022上·山东枣庄·六年级统考期末)下面的数中,( )可以转化为8个。
A.B.C.
17.(2023上·山东潍坊·六年级统考期末)下面的百分率可能超过100%的是( )。
A.衣服的含棉率B.用电的增长率C.大豆的出油率
18.(2023上·山东潍坊·六年级统考期末)聪聪用一枚硬币做抛硬币的游戏。前5次都抛出了反面,第六次抛的结果( )。
A.一定是反面B.一定是正面C.可能是反面
19.(2023上·山东德州·六年级统考期末)一种巧克力有“6块/盒”和“10块/盒”两种不同的包装。妈妈买了60块巧克力,可能是( )盒。
A.4B.7C.8D.11
20.(2023上·山东德州·六年级统考期末)一个半圆,半径为r,它的面积是( )。
A.πrB.πr+2rC.2πr2D.πr2÷2
21.(2023上·山东德州·六年级统考期末)无障碍设施的建设,体现城市“以人为本”的建设理念。无障碍出入口应设计轮椅坡道,坡道的坡度要符合无障碍设施的设计与要求。(坡度指每段坡道的垂直高度与水平长度的比)。一条轮椅坡道的坡度是1∶16,垂直高度是4分米,这条轮椅坡道的水平长度是( )分米。
A.25厘米B.25分米C.64分米D.64米
22.(2023上·山东德州·六年级统考期末)新冠防疫常态化,我们要做好日常消毒与防护,学校为每班购进1桶84消毒液和1桶酒精消毒液。总价是36元,已知84清毒液的价钱是酒精消毒液的,1桶酒精消毒液多少钱?用方程解答,下面方程式正确的是( )。
A.B.C.D.
23.(2023上·山东德州·六年级统考期末)鹅的孵化期是30天,鸡的孵化期是鹅的,鸽子的孵化期是鸡的,则鸽子的孵化期是多少天?为了解决这个问题,小丽、小兰、小君、小强分别用图表示出三种动物孵化期之间的数量关系。用图表示数量关系错误的是( )。
A.小丽B.小兰C.小君D.小强
24.(2023上·山东德州·六年级统考期末)儿童负重最好不要超过体重的,下面书包超重的同学是( )。
A.小利B.小明C.小平D.都不超重
25.(2023上·山东德州·六年级统考期末)下面各图形中,对称轴的条数最多的是( )。
A.B.C.D.
26.(2023上·山东德州·六年级统考期末)爱心蔬菜店为社区居民配送蔬菜,今天菜店运来一些白菜和土豆,白菜卖m元/千克,土豆卖n元/千克。爷爷买了白菜和土豆各a千克,共花了( )元。
A.m+nB.a+m+nC.am+nD.a(m+n)
27.(2023上·山东滨州·六年级统考期末)《九章算术》中有这样一个问题:“今有人持金十二斤出关,关税之,十分而取一。今关税取金二斤,偿钱五千,问金一斤值钱几何?”这道题的意思是:某人携带了12斤金子出关,按照规定,他应交纳税金。现在此人缴纳了2斤金子做为税金,关卡找给他5000枚钱,问一斤金子的价钱是多少枚?下面的说法正确的是( )。
① 12×求的是缴纳的税金。
② 2-12×求的是关卡找给他多少斤的金子。
③(2-12×)×5000求的是一斤金子的价钱是多少枚。
④ 5000÷(2-12×)求的是一斤金子的价钱是多少枚。
A.①②B.①②③C.①④D.①②④
28.(2022-2023学年广东省揭阳市榕城区北师大版六年级上册期末测试数学试卷)一个圆至少对折( )次,就可以找到圆心。
A.1B.2C.3D.4
29.(2023上·山东滨州·六年级统考期末)下列各比中,比值是的是( )。
A.0.3∶0.2B.∶C.2厘米∶3分米D.9∶6
30.(2023上·山东滨州·六年级统考期末)钢琴的琴键有52个白键和36个黑键,式子(52-36)÷52表示( )。
A.黑键比白键少几分之几B.黑键是白键的几分之几
C.白键比黑键多几分之几D.白键是黑键的几分之几
31.(2023上·山东滨州·六年级统考期末)某单位统计各部门出勤人数。甲部门一共有60人,实际到岗55人;乙部门到岗44人,缺席4人,则甲、乙两个部门的出勤率相比,( )。
A.甲部门高B.乙部门高C.一样高D.无法比较
32.(2023上·山东枣庄·六年级统考期末)六年级共有300人,在社团活动中被评为各种“小能手”的有240人。“小能手”的人数占六年级总人数的( )。
A.80%B.90%C.125%
33.(2023上·山东滨州·六年级统考期末)丽丽从某个不透明的盒子里摸了15次球(每次摸出后再放入盒中摇匀),摸出球的情况如左表。丽丽最有可能是从( )盒子里摸的球。
A.B.C.D.
34.(2023上·山东滨州·六年级统考期末)下面算式中得数最小的是( )。
A.B.C.D.
35.(2023上·山东滨州·六年级统考期末)(a,b均不为0),那么( )。
A.a=bB.a>bC.a<b
36.(2023上·山东枣庄·六年级统考期末)正确的算式是( )。
A.B.C.
37.(2023上·山东枣庄·六年级统考期末)3∶4的前项加上6,后项应( ),比值才不变。
A.加上6B.乘3C.加上4
38.(2023上·山东滨州·六年级统考期末)对下面消毒液使用说明“1∶52”理解错误的是( )。
A.1份消毒液配52份水B.20ml消毒液要加1040ml水
C.水与消毒液的比为52∶1D.消毒液占稀释后液体总量的
39.(2022上·山东德州·六年级校考期末)专家指出,超重与肥胖人数庞大,与饮食量、饮食结构不合理和运动缺乏有关。12岁的团团身高160厘米,体重72千克,根据下图的体重分类标准,他的体重属于( )。
A.标准体重B.轻度肥胖C.中度肥胖D.重度肥胖
40.(2022上·山东潍坊·六年级统考期末)下面阴影部分是扇形的是( )。
A.B.C.D.
41.(2023上·山东滨州·六年级统考期末)下面图( )中的阴影部分占整幅图的百分比,和长方形中阴影部分占整幅图的百分比相同。
A.B.C.D.
42.(2022上·山东德州·六年级校考期末)下图是一个用竹篱笆靠墙围成的半径为5米的半圆形的养鸡场,篱笆长( )米。
A.15.7B.31.4C.25.7D.41.4
43.(2022上·山东潍坊·六年级统考期末)图中深色阴影部分,可以用乘法算式( )表示。
A.B.C.
44.(2022上·山东德州·六年级校考期末)一位同学把(a+)×4写成了a+×4,这样算出的结果与正确结果相差( )。
A.4aB.3aC.4D.
45.(2022上·山东潍坊·六年级统考期末)某单位统计各部门出勤人数。甲部门一共有48人,实际到岗44人;乙部门到岗55人,缺席5人,则甲、乙两个部门的出勤率相比,( )。
A.甲部门高B.乙部门高C.一样高D.无法比较
46.(2023上·山东潍坊·六年级统考期末)商店里有两种笔记本,单价分别是2元和3元。王老师带30元,全部用来买笔记本(两种笔记本都买),要正好花完,共有( )种不同的买法。
A.3B.4C.6
47.(2023上·山东德州·六年级统考期末)准备一块长、宽之比3∶2,周长是40米的长方形铁片,将其剪成半径是1.5米的小圆(不能剪拼),最多可以剪( )个。
A.8B.10C.11D.13
48.(2023上·山东滨州·六年级统考期末)笑笑同学用两个圆分别设计出了下面几种图形,其中图形( )的对称轴条数最少。
A.B.C.D.
49.(2022上·山东德州·六年级校考期末)“数形结合”是很重要的数学思想,下面( )可以表示“的是多少”。
A.B.
C.D.
50.(2022上·山东潍坊·六年级统考期末)如图,涂色部分是长方形面积是,是三角形面积的,则长方形与三角形面积的比是( )。
A.3∶5B.5∶3C.3∶2
51.(2022上·山东聊城·六年级统考期末)在一个直角三角形中,两个锐角的度数比是5∶4,最小的锐角( )度。
A.80B.40C.50
52.(2023上·山东潍坊·六年级统考期末)“由于疫情影响,今年万达影院看电影的人数比去年减少了”。根据这个信息,下面的数量关系正确的是( )。
A.今年的人数=去年人数的B.今年的人数=去年的人数-今年人数的C.今年的人数=去年的人数-去年人数的
53.(2023上·山东青岛·六年级校考期末)把一张直径4厘米的圆形纸片对折两次得到一个扇形,这个扇形的周长是( )厘米。
A.B.C.
54.(2023上·山东德州·六年级统考期末)一个饲养场进行扩建生产,今年养鸭1200只,养的鸡比鸭多,今年养的鸡有多少只?正确的列式是( )。
A.1200×B.1200×(1+)C.1200÷D.1200÷(1+)
55.(2023上·山东青岛·六年级校考期末)一件商品涨价10%后,又降价10%,现价比原价( ).
A.便宜B.贵C.同样多D.无法确定
56.(2023上·山东青岛·六年级校考期末)下图中正方形大小相等,则阴影部分面积( )。
A.第一图最大B.相等C.第三图最大
57.(2023上·山东滨州·六年级统考期末)下面算式的计算结果最大的是( )。
A.B.C.D.
58.(2022上·山东潍坊·六年级统考期末)在推导圆的面积公式时,把一个圆分成若干等份后,拼成一个近似的长方形,这个长方形的长是( )。
A.圆的半径B.圆的直径C.圆的周长D.圆周长的一半
59.(2022上·山东青岛·六年级校考期末)一袋面粉,先吃,再加进这时袋中面粉的,现在这袋面粉( )。
A.比原来重B.比原来轻C.与原来一样重
60.(2022上·山东德州·六年级校考期末)一根绳子,小明剪去了,小亮又剪去了2米。下面说法正确的是( )。
A.小明剪去的长B.小亮剪去的长C.一样长D.无法比较
61.(2022上·山东潍坊·六年级统考期末)在下图中,四个圆的圆心在一条直线上,大圆的周长与三个小圆的周长比较,结果是( )。
A.大圆的周长比较长B.大圆的周长比较短C.相等
62.(2022上·山东聊城·六年级统考期末)下列现象中,( )是确定的。
A.扔一枚硬币,正面朝上的可能性最大
B.下个星期一定下雪
C.三角形的内角和是180度
63.(2022上·山东枣庄·六年级统考期末)小明身高是145厘米,他爸爸的身高是1.78米。小明和爸爸的身高比是( )
A.145∶1.78B.1.78∶145C.145∶178
64.(2023上·山东潍坊·六年级统考期末)根据下图,求“x”是多少列式正确的是( )。
A.B.C.
65.(2023上·山东德州·六年级统考期末)下面的数中,最大的是( )。
A.3.14B.31.4%C.πD.
66.(2023上·山东青岛·六年级校考期末)一个三角形三个内角度数的比是1∶1∶3,这是一个( )三角形。
A.锐角B.直角C.钝角
67.(2023上·山东青岛·六年级校考期末)利群超市进行中秋大促销活动,一种商品先提价10%后又降价10%,现价与原价相比( )
A.提高了B.降低了C.不变
68.(2022上·山东潍坊·六年级统考期末)把10克药溶解在1千克水中,药与药水的比是( )。
A.10∶1B.1∶11C.1∶101D.1∶100
69.(2019-2020学年黑龙江省双鸭山市宝清县人教版六年级上册期末测试数学试卷)用同样长的铁丝围成长方形、正方形和圆形,则围成的图形面积最大的是( )。
A.长方形B.正方形C.圆形
70.(2022上·山东潍坊·六年级统考期末)用6.28米长的铁丝分别围成下面几个图形,面积最大的是( )。
A.长方形B.平行四边形C.三角形D.圆
71.(2022上·山东聊城·六年级统考期末)一个半圆,它的半径是r,这个半圆的周长是( )。
A.πrB.πr+2rC.2πr+2rD.2πr
72.(2022上·山东枣庄·六年级统考期末)经过全班同学的努力,这次全班数学期末检测合格率达到了( )。
A.2%B.96%C.120%
73.(2023上·山东潍坊·六年级统考期末)a是一个不为0的自然数,下面的算式,结果最大的是( )。
A.B.C.
74.(2023上·山东青岛·六年级校考期末)在推导圆的周长公式时,我们测量了一些圆的周长。测量时,我们用到的方法有多种,它们的共同点是什么?( )。
A.化曲为直B.化圆为方C.没有共同点
75.(2023上·山东德州·六年级统考期末)本学期,我们探究了圆的面积计算公式,五年级我们探究了平行四边形、三角形和梯形的面积计算公式,想一想,我们都经历了怎样的研究过程?( )
A.寻找关系——转化图形——推导公式B.转化图形——推导公式——寻找关系
C.转化图形——寻找关系——推导公式D.寻找关系——推导公式——转化图形
76.(2023上·山东青岛·六年级校考期末)如果,,那么a( )b。
A.大于B.小于C.等于
77.(2023上·山东青岛·六年级校考期末)如果大圆和小圆半径的比是2∶1,那么大圆和小圆面积的比是( )。
A.2∶1B.4∶2C.4∶1
78.(2023上·山东滨州·六年级统考期末)在解决“把4个同样大的橙子分给小朋友,每人分个,可以分给几人?”时,小明列式计算:(人)。这里的“4×2”中的“2”表示( )。
A.4个橙子分给2人B.4个橙子分给1人
C.2个橙子分给1人D.1个橙子分给2人
79.(2022上·山东潍坊·六年级统考期末)下面四个袋子中装的都是一些黄球和蓝球,摸出黄球算获奖,哪个袋子获奖的可能性大。( )
A.6个黄球,3个蓝球B.4个黄球,4个蓝球
C.3个黄球,4个蓝球D.8个黄球,10个蓝球
80.(2022上·山东青岛·六年级校考期末)下面A、B、C三个图形都被分为空白和阴影两部分。空白部分和阴影部分的周长和面积都相等的图形是( )。
A.B.C.
81.(2022上·山东潍坊·六年级统考期末)小红从下面某个盒子里摸了15次球(每次摸出后再放入盒中摇匀),摸出球的情况如表。小红最有可能是从( )盒子里摸的球。
A.B.
C.D.
82.(2022上·山东聊城·六年级统考期末)两根同样长的绳子,第一根截去米,第二根截去绳长的,( )根截去的多?
A.第一根B.第二根C.不能确定
83.(2023上·山东潍坊·六年级统考期末)有一块菜地,种萝卜的面积占30%,种白菜的面积占。白菜和萝卜,哪种菜的面积大?( )
A.萝卜面积大B.白菜面积大C.无法确定
84.(2023上·山东青岛·六年级校考期末)将20克糖溶解在80克水中,糖占糖水的( )。
A.20%B.25%C.80%
85.(2023上·山东德州·六年级统考期末)世界名画《蒙娜丽莎》,她的头宽与肩宽的比符合黄金比,这个比的比值是( )。
A.0.382B.0.618C.6.18D.0.2
86.(2023上·山东青岛·六年级校考期末)下图中,O是大圆的圆心,小圆的周长与大圆周长的比是( )。
A.1∶2B.1∶3C.1∶4
87.(2023上·山东青岛·六年级校考期末)三角形三个内角比是2∶3∶1,这个三角形是( )。
A.锐角三角形B.直角三角形C.钝角三角形
88.(2023上·山东滨州·六年级统考期末)国庆期间,学校的菊花有60盆,牡丹花有。下面说法正确的是( )。
A.菊花比牡丹花少B.牡丹花比菊花少C.牡丹花比菊花多D.菊花比牡丹花多
89.(2022上·山东潍坊·六年级统考期末)一种钢笔有6支装和10支装两种不同的包装。李老师要买56支钢笔当作书法比赛的奖品,一共有多少种不同的买法?( )
A.2B.3C.4D.5
90.(2022上·山东德州·六年级校考期末)3.1、π、314%、四个数中最大的是( )。
A.3.1B.πC.314%D.
91.(2020-2021学年河北省石家庄市辛集市人教版六年级上册期中测试数学试卷)( )的倒数一定大于1。
A.真分数B.假分数C.小数D.任何数
92.(2022上·山东枣庄·六年级统考期末)下列算式中,如果a代表一个非零的自然数,那么得数最大的是( )。
A.B.C.
93.(2023上·山东潍坊·六年级统考期末)下面的三杯蜂蜜水,最甜的是( )。
A.蜂蜜是水的B.蜂蜜与水的比是1∶10C.30克蜂蜜加了270克水
94.(2023上·山东青岛·六年级校考期末)下列算式中结果最大的是( )。
A.B.C.
95.(2023上·山东滨州·六年级统考期末)PM2.5颗粒是导致雾霾天气的“罪魁祸首之一”,PM2.5颗粒的最大直径是2.5微米,人的头发直径一般为50微米。PM2.5颗粒的最大直径与人的头发直径的最简整数比是( )。
A.2.5∶50B.25∶500C.1∶20D.1∶200
96.(2022上·山东潍坊·六年级统考期末)下列说法正确的是( )。
A.小亮说:“经过一整个暑假的体育锻炼,我的体重下降了10%千克”。
B.小明说:“发芽率就是发芽的种子数占未发芽的种子数的百分之几”。
C.小刚说:“两个数的乘积一定比这两个数的商大”。
D.小强说:“所有圆的周长与直径的比值都相等”。
97.(2022上·山东青岛·六年级校考期末)大圆和小圆的半径比是3︰1,那么大圆和小圆的面积比是( )。
A.3∶1B.9∶1C.9∶2
98.(2022上·山东德州·六年级校考期末)下面阴影部分是扇形的是( )。
A.B.C.D.
99.(2022上·山东聊城·六年级统考期末)与为互为倒数,( )。
A.25B.1C.D.
100.(2023上·山东枣庄·六年级统考期末)下面图形中( )是圆心角。
A.B.C.
参考答案
1.A
【分析】自行车的车轮是圆形,车轮滚动一周所行的路程相当于把圆剪开后拉直的长度,即车轮的周长。
【详解】分析可知,自行车的车轮滚动一周,所行路程是车轮的周长。
故答案为:A
【分析】围成圆的曲线的长度就是圆的周长,题中车轮的行驶路程相当于圆的周长。
2.B
【分析】根据比的基本性质:比的前项与后项同时乘或除以一个不为0的数,比值不变。
【详解】已知(a×3)∶(b×3)=2.4,那么a∶b=2.4;
故答案为:B
【分析】此题考查了比的基本性质,关键理解概念。
3.C
【分析】根据圆的面积公式S=πr2,以及积的变化规律:一个因数不变,另一个因数乘几或除以几(0除外),积也乘(或除以)几;可知:圆的半径扩大到原来的3倍,即圆的半径乘3,那么它的面积就要乘32,即面积扩大到原来的(3×3)倍。
【详解】3×3=9
如果圆的半径扩大到原来的3倍,那么它的面积就扩大到原来的9倍。
故答案为:C
【分析】本题考查圆的面积公式以及积的变化规律的应用。
4.C
【分析】除法与比的关系:被除数相当于比的前项,除数相当于比的后项,除号相当于比号;
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
先根据除法与比的关系,将A÷B=改写成A∶B=,然后根据比的基本性质,比的前项和后项同时除以2,比值不变;据此解答。
【详解】A÷B=
A∶B=
根据比的基本性质可知,(A÷2)∶(B÷2)=。
故答案为:C
【分析】本题考查比的基本性质的灵活运用。
5.A
【分析】三角形的内角和等于180度,所以直角三角形中两个锐角之和等于直角,可以看作两个锐角的份数加起来等于直角的份数。其中一个锐角看作1份,直角看作4份,所以另一个锐角占3份,那么即可得出两个锐角的比是多少。
【详解】一个锐角看作1份,另一个锐角占份;
所以这个锐角与另一个锐角的比。
故答案为:A
【分析】此题的解题关键是利用直角三角形的特点,巧妙的把直角三角形中的角度比通过比的实际应用,得出正确的答案。
6.A
【分析】根据题意,摸到红球4次,黄球6次,可推出盒子中黄球的数量可能比红球的多,据此解答。
【详解】A.7>3,摸到黄球的可能性比红球的大,符合题意;
B.5=5,摸到黄球和红球的可能性一样大,不符合题意;
C.4<6,摸到黄球的可能性比红球的小,不符合题意;
D.2<8,摸到黄球的可能性比红球的小,不符合题意。
故答案为:A
【分析】本题考查可能性的大小,根据事件数量的多少判断可能性的大小。
7.B
【分析】把第一根10米长的丝带看作单位“1”,截去它的,剩下全长的(1-),求一个数的几分之几是多少,用乘法,用10乘(1-)即可求出第一根余下部分的长度;用第二根丝带的长度10米减去米,即可求出第二根余下部分的长度;比较两根丝带余下部分的长度,即可得解。
【详解】10×(1-)
=10×
=2.5(米)
10-=10-0.75=9.25(米)
2.5<9.25
所以第二根余下部分长一些。
故答案为:B
【分析】此题的解题关键是理解分数代表的是分率还是具体的数量,利用分数减法、分数乘法的意义,求出结果。
8.B
【分析】A.树苗的成活率=×100%,全部成活时成活率最高,为100%;
B.小麦的出粉率=×100%,小麦不可能全部磨成面粉,所以出粉率小于100%;
C.一种零件的合格率=×100%,全部合格时合格率最高,为100%;
D.六年级学生的出勤率=×100%,全部出勤时出勤率最高,为100%。
【详解】树苗的成活率、一种零件的合格率和六年级学生的出勤率都有可能为100%;小麦的出粉率
一定小于100%;
故答案为:B。
【分析】明确各种百分率的含义是解答本题的关键。
9.D
【分析】“一定”表示确定事件,“可能”表示不确定事件,“不可能”属于确定事件中的必然事件,“经常”表示发生的可能性比较大,“偶尔”表示发生的可能性比较小,然后结合实际生活,进行解答即可。
【详解】A.地球一定绕着太阳转;
B.太阳不可能从西边出来;
C.把一个铁块放入水中,铁块一定沉底;
D.明天可能下雨,也可能不下雨。
故答案为:D
【分析】此题考查的是事件的确定性和不确定性,应明确事件的确定性和不确定性,并能结合实际进行正确判断。
10.A
【分析】圆上一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形,据此判断即可。
【详解】由分析可知,阴影部分是扇形的是。
故答案为:A
【分析】解答本题关键是深刻理解扇形的意义。
11.B
【分析】4支装和6支装的一共26支,先列出4支装的盒数,用26减去4支装的总支数,再除以6,算出6支装的盒数,找出所有符合要求的数量并表示出来。
【详解】购买2盒4支装的钢笔和3盒6支装的钢笔:
2×4+3×6
=8+18
=26(支)
购买5盒4支装的钢笔和1盒6支装的钢笔:
5×4+1×6
=20+6
=26(支)
所以张老师要购买26支这样的钢笔,可以有2种不同的选择方法。
故答案为:B
【分析】在解决这一问题时用列举的思想方法可以不重复不遗漏的找到所有的买法。
12.A
【分析】一个数去掉百分号后,会扩大到原来的100倍;填上百分号后,会缩小到原来的,据此解答即可。
【详解】12.5%的百分号忘记写了,这相当于把这个数扩大到原来的100倍;
故答案为:A。
【分析】明确百分号对数的大小影响是解答本题的关键。
13.C
【分析】根据已知条件,可假设,利用分数乘法和分数除法的计算法则,分别求出a、b、c的值,再根据异分母分数比较大小的方法,即可求出这3个数中,哪一个最大。
【详解】假设
解:
解:
解:
=,=,=
<<
即<<,所以、、三个数中,最大。
故答案为:C
【分析】此题的解题关键是利用赋值法,通过分数乘法、分数除法的计算法则以及分数比较大小的方法,从而解决问题。
14.D
【分析】把美术社团的总人数看作单位“1”,美术社团的女生人数=美术社团的总人数×60%;
把音乐社团的总人数看作单位“1”,音乐社团的女生人数=音乐社团的总人数×60%;
因为两个社团的总人数不确定,所以美术、音乐社团的女生人数无法确定。
【详解】美术和音乐两个社团的女生人数都占本社团总人数的60%,由于两个社团的总人数不确定,所以美术、音乐社团的女生人数无法确定。
故答案为:D
【分析】解题的关键是明确两个60%的单位“1”的不同,无法比较。
15.A
【分析】假设a=1,分别计算出四个选项的结果,再进行比较即可。
【详解】假设a=1;
A.1÷=7;
B.1×=;
C.1×=;
D.1÷=6;
故答案为:A。
【分析】熟练掌握分数乘、除法的计算方法是解答本题的关键。
16.C
【分析】求出8个是多少,再结合选项选择即可。
【详解】8个是×8=。
故答案为:C
【分析】本题主要考查分数乘整数的计算方法。
17.B
【分析】衣服的含棉率表示棉占面料总成分的百分之几;用电的增长率表示增长的用电量占原来用电量的百分之几;大豆的出油率表示油的质量占大豆的总质量的百分之几。根据百分率的意义结合实际情况进行解答即可。
【详解】A.因为棉的质量≤面料总成分的质量,所以衣服的含棉率不可能超过100%。
B.因为增长的用电量有可能大于原来用电量,所以用电的增长率可能超过100%。
C.因为油的质量<大豆的总质量,所以出油率不可能超过100%。
故答案为:B
【分析】一般情况下,百分率最大是100%,特殊的如增长率、利润率等可能会超过100%。
18.C
【分析】一个硬币只有正反两面,所以正面朝上和反面朝上的可能性相同的,第6次抛硬币哪个面朝上,与前5次无关,据此解答。
【详解】由分析可得:他第6次抛硬币时,正面和反面朝上的可能性相同,所以可能是反面。
故答案为:C
【分析】解答本题的关键是要明确硬币只有正反两面,所以抛出的可能性相同。
19.C
【分析】如果全部买6块/盒的,那么买了10盒。如果全部买10块/盒的,那么买了6盒。对比选项发现,不是全部都买同一种包装的,那么是两种包装各买了一些;
10的倍数个位上都是0,总共有60块巧克力,那么6块一盒的巧克力总共买的块数个位上也是0,所以6块一盒的买了5盒。据此解题。
【详解】5×6=30(块)
(60-30)÷10
=30÷10
=3(盒)
5+3=8(盒)
所以,可能是买了6块/盒的巧克力5盒,10块/盒的买了3盒,一共买了8盒。
故答案为:C
【分析】本题考查了可能性和倍数,分析问题时要全面,掌握10、6的倍数是解题的关键。
20.D
【分析】半圆的面积相当于圆面积的一半,根据圆面积公式:S=πr2,则用πr2÷2即可求出半圆的面积。
【详解】如图:
根据分析可知,半圆的面积是πr2÷2。
故答案为:D
【分析】本题考查了圆面积公式的灵活应用,熟记相关公式是解答本题的关键。
21.C
【分析】两数相除又叫两个数的比,垂直高度÷对应份数,求出一份数,一份数×水平长度的对应份数=水平长度,据此列式计算。
【详解】4÷1×16=64(分米)
这条轮椅坡道的水平长度是64分米。
故答案为:C
【分析】关键是理解比的意义,将比的前后项看成份数。
22.D
【分析】已知84清毒液的价钱是酒精消毒液的,则把酒精消毒液的价钱看作单位“1”,根据分数乘法的意义,则1桶酒精消毒液的价钱×=1桶84清毒液的价钱,1桶酒精消毒液的价钱+1桶84清毒液的价钱=36元,据此设1桶酒精消毒液x元,则列方程为,然后解出方程即可。
【详解】解:设1桶酒精消毒液x元。
1桶酒精消毒液27元。
故答案为:D
【分析】本题考查了列方程解决问题,找到相应的数量关系式是解答本题的关键。
23.B
【分析】已知鹅的孵化期是30天,鸡的孵化期是鹅的,则把鹅的孵化期看作单位“1”,把它平均分成10份,鸡的孵化期相当于其中的7份,又已知鸽子的孵化期是鸡的,则把鸡的孵化期看作单位“1”,把它平均分成7份,鸽子的孵化期相当于其中的6份。根据分数乘法的意义,则用30×即可求出鸡的孵化期,再用鸡的孵化期×即可求出鸽子的孵化期;据此解答。
【详解】A.小丽用30个圆表示鹅的孵化期,
30×=21(天)
则用21个圆表示鸡的孵化期,
21×=18(天)
则用18个圆表示鸽子的孵化期。
说明小丽表示正确;
B.用线段表示孵化期的天数,根据题意,可知鸽子的线段应当是鸡的线段的,所以图不符合;
C.用线段表示孵化期的天数,用一条线段表示鹅的孵化期,则把它平均分成10份,用线段的表示鸡的孵化期,再把鸡的孵化期的线段平均分成7份,用鸡的孵化期的线段的表示鸽子的孵化期;说明小君表示正确。
D.用条形统计图表示孵化期,已知鹅的孵化期有30天,鸡的孵化期有21天,鸽子的孵化期有18天,说明小强表示正确。
故答案为:B
【分析】本题考查了分数乘法的应用,明确求一个数的几分之几是多少,用乘法计算,注意分率对应的单位“1”不同。
24.A
【分析】把儿童的体重看作单位“1”,根据分数乘法的意义,可得书包的最高重量=儿童的体重×,据此求出三位同学各自能承受的书包的最高重量,再与实际的重量比较即可。
【详解】A.36×=5.4(千克)
5.4<6
小利的书包超重;
B.32×=4.8(千克)
4.8>4
小明的书包没有超重;
C.35×=5.25(千克)
5.25>5
小平的书包没有超重。
故答案为:A
【分析】本题主要考查了分数乘法的应用,明确求一个数的几分之几是多少,用乘法计算。
25.B
【分析】一个图形沿一条直线对折后,折痕两旁的部分能够完全重合,这样的图形就是轴对称图形,这条直线就是对称轴。
【详解】A.正方形有4条对称轴;
B.圆的直径所在的直线是圆的对称轴,所以圆有无数条对称轴;
C.等边三角形有3条对称轴;
D.五角星有5条对称轴;
综上所述,对称轴的条数最多的是圆。
故答案为:B
【分析】掌握轴对称图形的意义及特点,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合。
26.D
【分析】单价×数量=总价,白菜单价×质量+土豆单价×质量=总钱数,据此用字母表示出总钱数即可。
【详解】m×a+n×a= a(m+n)(元)
共花了a(m+n)元。
故答案为:D
【分析】关键是理解单价、数量、总价之间的关系,理解字母可以表示任意数。
27.D
【分析】(1)十二斤金子十分而取一就是将12斤金子分成10分取其中的一份作为关税,也就是12×;
(2)缴纳2斤金子,应缴12×的税金,用2斤减去税金是应找回的剩余金子;
(3)求一斤金子的价钱相当于多少枚钱,用钱数除以对应的金子数量即可解答。
【详解】① 12×求的是缴纳的税金,说法正确;
② 2-12×求的是关卡找给他多少斤的金子,说法正确;
③(2-12×)×5000求的不是一斤金子的价钱是多少枚,说法错误;
④ 5000÷(2-12×)求的是一斤金子的价钱是多少枚,说法正确;
故答案为:D
【分析】此题主要考查学生对分数意义以及分数乘除法的理解与应用,理解题意最关键。
28.B
【分析】圆对折出来的痕迹是直径,圆有无数条直径,直径的交点就是圆心,至少两条直径可以确定圆心的位置,据此解答。
【详解】根据分析可知,一个圆至少对折2次,就可以找到圆心。
故答案为:B
【分析】本题考查确定圆心的方法以及对圆的认识。
29.B
【分析】根据比值的求法,用比的前项除以比的后项得到的结果即是比值,单位不同的,先统一单位。
【详解】A.0.3∶0.2=0.3÷0.2=1.5,不符合题意;
B.∶=÷=,符合题意;
C.2厘米∶3分米
=2厘米∶30厘米
=2÷30
=;不符合题意;
D.9∶6=9÷6=1.5;不符合题意。
故答案为:B
【分析】本题主要考查比值的求法,熟练掌握比值的求法是解题的关键。
30.A
【分析】A.求黑键比白键少几分之几,先用减法求出黑键比白键少的数量,再除以白键即可;
B.求黑键是白键的几分之几,用黑键除以白键;
C.求白键比黑键多几分之几,先用减法求出白键比黑键多的数量,再除以黑键即可;
D.求白键是黑键的几分之几,用白键除以黑键。
【详解】A.黑键比白键少几分之,列式为:(52-36)÷52,符合题意;
B.黑键是白键的几分之几,列式为:36÷52,不符合题意;
C.白键比黑键多几分之几,列式为:(52-36)÷36,不符合题意;
D.白键是黑键的几分之几,列式为:52÷36,不符合题意。
故答案为:A
【分析】明确求一个数比另一个数多或少几分之几,用两数的差值除以另一个数;
求一个数是另一个数的几分之几,用除法计算。
31.C
【分析】根据“出勤率=出勤的人数÷总人数×100%”,分别求出甲、乙两个部门的出勤率,然后比较即可。
【详解】甲部门的出勤率:
55÷60×100%
≈0.917×100%
=91.7%
乙部门的出勤率:
44÷(44+4)×100%
=44÷48×100%
≈0.917×100%
=91.7%
91.7%=91.7%,所以甲、乙两个部门的出勤率相比,一样高。
故答案为:C
【分析】本题考查百分率问题,掌握出勤率的计算方法是解题的关键。
32.A
【分析】根据求一个数占另一个数的百分之几,用一个数除以另一个数再乘100%,则用240÷300×100%即可求出小能手”的人数占六年级总人数的百分之几。
【详解】240÷300×100%
=0.8×100%
=80%
“小能手”的人数占六年级总人数的80%。
故答案为:A
【分析】本题考查了百分数的应用,明确求一个数占另一个数的百分之几,用除法计算。
33.C
【分析】盒子里哪种球的数量多,摸到哪种球的可能性就大,哪种球的数量少,摸出哪种球的可能性就小,从摸出球的情况来看,摸出的白球比红球多得多,可能盒子里的白球比红球多得多,据此分析。
【详解】A.,红球比白球多得多,摸出红球的可能性非常大,不符合题意;
B.,因为没有红球,只能摸到白球和黄球,摸不到红球,不符合题意;
C.,白球比红球多得多,摸出白球的可能性非常大,符合题意;
D.,白球和红球同样多,摸出白球和红球的可能性一样大,不符合题意。
丽丽从某个不透明的盒子里摸了15次球(每次摸出后再放入盒中摇匀),摸出球的情况如左表。丽丽最有可能是从盒子里摸的球。
故答案为:C
【分析】可能性的大小与事件的基本条件和发展过程等许多因素有关。哪种球的数量多,发生的可能性就大一些。
34.C
【分析】根据小数、分数加减乘除法的计算方法,直接计算出各个选项的结果,然后再进行判断即可。
【详解】A.5.2+=5.3
B.5.2-=5.1
C.5.2×=0.52
D.5.2÷=5.2×10=52
52>5.3>5.1>0.52,所以得数最小的是5.2×。
故答案为:C
【分析】本题主要考查了小数、分数的基本运算以及大小比较的方法,要熟练掌握。
35.C
【分析】根据积一定,一个数乘的数越小其本身越大,进行分析。
【详解】,5>,所以a<b。
故答案为:C
【分析】关键是掌握分数乘法的计算方法。
36.B
【分析】观察线段图可知,把32看作单位“1”,未知数比单位“1”多,则未知数是单位“1”的(1+),根据求一个数的几分之几是多少,用乘法计算即可。
【详解】由分析可知:
=
=40
故答案为:B
【分析】本题考查求比一个多几分之几是多少,明确单位“1”是解题的关键。
37.B
【分析】根据3∶4的前项加上6,可知比的前项由3变成9,相当于前项乘3;根据比的性质,要使比值不变,后项也应该乘3,据此即可得出答案。
【详解】3∶4的前项加上6,
3+6=9
9÷3=3
可知比的前项由3变成9,相当于前项乘3;
要使比值不变,后项也应该乘3。
故答案为:B
【分析】此题考查比的性质的运用,比的前项和后项同时乘或除以相同的数(0除外),比值才不变。
38.D
【分析】由题意可知,1∶52表示消毒液和水的质量比为1∶52,根据比的意义求出选项中消毒液和水的质量比,即可求得。
【详解】A.消毒液∶水=1份∶52份=1∶52,正确;
B.消毒液∶水=20∶1040=(20÷20)∶(1040÷20)=1∶52,正确;
C.水∶消毒液=52∶1,则消毒液∶水=1∶52,正确;
D.消毒液∶(消毒液+水)=1∶(1+52)=1∶53,则消毒液∶稀释后液体总量=1∶53,原题说法错误。
故答案为:D
【分析】掌握比的意义求出消毒液和水的质量比是否为1∶52是解答题目的关键。
39.C
【分析】根据标准体重=(身高-100)×0.9,代入数据,求出团团的标准体重,再根据(实际体重-标准体重)÷标准体重,即可判断出团团属于哪个标准,即可解答。
【详解】(160-100)×0.9
=60×0.9
=54(千克)
(72-54)÷54
=18÷54
=
=;=;=
<<,即<<,团团属于中度肥胖。
专家指出,超重与肥胖人数庞大,与饮食量、饮食结构不合理和运动缺乏有关。12岁的团团身高160厘米,体重72千克,根据下图的体重分类标准,他的体重属于中度肥胖。
故答案为:C
【分析】根据求一个数是另一个数的几分之几以及异分母分数比较大小的方法进行解答。
40.C
【分析】由圆的两条半径与这两条半径所夹的圆心角所对的弧围成的图形就是扇形,据此分析。
【详解】A.顶点没在圆心,阴影部分的两条边不是半径,夹角不是圆心角,不是扇形;
B.顶点没在圆心,阴影部分的两条边不是半径,夹角不是圆心角,不是扇形;
C.是扇形;
D.两条半径所夹的圆心角所对的不是弧,是个三角形,不是扇形。
故答案为:C
【分析】关键是熟悉扇形的特征,扇形是圆的一部分。
41.B
【分析】根据阴影部分面积÷整幅图的面积×100%=阴影部分占整幅图的百分比,逐个计算出长方形和选项中的圆形的阴影部分占整幅图的百分比,找到相同的百分比即可解答。
【详解】长方形中阴影部分占整幅图的百分比:
9÷24×100%
=0.375×100%
=37.5%
A.图中阴影部分占整幅图的百分比:
4÷8×100%
=0.5×100%
=50%
B.图中阴影部分占整幅图的百分比:
3÷8×100%
=0.375×100%
=37.5%
C.图中阴影部分占整幅图的百分比:
5÷8×100%
=0.625×100%
=62.5%
D.图中阴影部分占整幅图的百分比:
2÷8×100%
=0.25×100%
=25%
故答案为:B
【分析】此题考查了求部分占整体的百分之几是多少用除法计算。
42.A
【分析】根据圆周长=,代数求出整圆的周长,再除以2即可解答。
【详解】3.14×5×2÷2
=15.7×2÷2
=15.7(米)
篱笆长15.7米。
故答案为:A
【分析】此题主要考查学生对圆周长公式的理解与应用。
43.B
【分析】看图可知,整个长方形是单位“1”,先选取整个长方形的,再从选取的中选取,即的,用乘法算式表示是,据此分析。
【详解】深色阴影部分,可以用乘法算式表示。
故答案为:B
【分析】关键是理解分数乘法的意义。
44.B
【分析】根据乘法分配律可知,(a+)×4去括号后是,如果写成a+×4,减少了a的3倍,据此即可选择。
【详解】(a+)×4-(a+×4)
=
=3a
算出的结果与正确结果相差3a。
故答案为:B
【分析】此题主要考查学生对乘法分配律以及字母表示数的化简求值,牢记公式,逐步解答即可.
45.C
【分析】根据题意,先分别求出甲乙两个部门的出勤率,再对比即可。
【详解】甲部门:44÷48≈92%
乙部门:55÷(55+5)
=55÷60
≈92%
并且,44÷48=55÷60。
所以,甲、乙两个部门的出勤率一样高。
故答案为:C
【分析】本题考查了百分数的应用,出勤率等于实际到岗人数除以部门总人数。
46.B
【分析】根据题意,将30拆分为:一个是2的倍数与另一个是3的倍数,利用列举法,逐一举例,分别找出买法总价为30的情况即可。
【详解】根据题意,30以内的3的倍数有:3、6、9、12、15、18、21、24、27;
根据偶数+偶数=偶数,买单价为3元的总价是:6、12、18、24,对应单价为2元的总价是:24、18、12、6;
所以,全部用来买笔记本(两种笔记本都买),要正好花完,共有(4)种不同的买法。
故答案为:B
【分析】此题考查了因数与倍数的知识,关键能够结合题意进行列举。
47.A
【分析】先用长方形的周长÷2求出长与宽的和;再把长与宽的和按3∶2分配,分别求出长和宽;然后用半径×2求出圆的直径;最后用长方形的长除以直径求出长里面包含几个圆,用长方形的宽除以直径求出宽里面包含几个圆,二者相乘求出圆的个数。
【详解】长与宽的和:40÷2=20(米)
3+2=5(份)
20÷5=4(米)
长:4×3=12(米)
宽:4×2=8(米)
直径:1.5×2=3(米)
12÷3=4(个)
8÷3=2(个)……2(米)
4×2=8(个)
所以最多可以剪8个圆。
故答案为:A
【分析】因为圆不能密铺,所以求圆的个数不能用长方形的面积除以圆的面积。
48.C
【分析】将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,折痕所在的直线叫做它的对称轴,根据对称轴的定义画出各图形的对称轴,据此解答。
【详解】A.一共2条对称轴;
B.有无数条对称轴;
C.只有1条对称轴;
D.一共2条对称轴。
所以,图形的对称轴条数最少。
故答案为:C
【分析】本题主要考查轴对称图形的对称轴,掌握对称轴的意义是解答题目的关键。
49.C
【分析】由于的是多少,用×,根据分数的意义,表示把一个整体平均分成3份,取其中的2份,把这2份图上一种阴影,之后把这2份看作一个整体,再平均分成5份,取其中的1份,用另一种阴影表示即可。
【详解】由分析可知,表示×。
故答案为:C。
【分析】本题主要考查分数的意义以及分数乘法的意义,熟练掌握它们的意义并灵活运用。
50.A
【分析】分别将长方形和三角形面积看作单位“1”,涂色部分是长方形面积是,是三角形面积的,假设阴影部分的面积是1,长方形面积=1÷,三角形面积=1÷,根据比的意义,确定长方形与三角形面积比,化简即可。
【详解】(1÷)∶(1÷)=3∶5
长方形与三角形面积的比是3∶5。
故答案为:A
【分析】关键是理解分数除法和比的意义,两数相除又叫两个数的比。
51.B
【分析】在直角三角形中,两个锐角的度数之和是90°,已知两个锐角的度数比是5∶4,按比例分配即可求出最小的锐角。
【详解】90× =40(度),最小的锐角是40度。
故选择:B
【分析】此题考查了按比例分配问题,明确两个锐角的和是90°是解题关键。
52.C
【分析】今年万达影院看电影的人数比去年减少了,将去年的人数看作单位“1”,今年的人数等于去年的人数-去年人数的,据此解答。
【详解】由分析可得:数量关系正确的是今年的人数=去年的人数-去年人数的。
故答案为:C
【分析】解答本题需准确分析题意,明确单位“1”是关键。
53.B
【分析】由题意可知,这个扇形的周长等于直径是4厘米圆的周长的加上一条直径的长度。据此计算即可。
【详解】π×4×+4
=(π+4)厘米
则这个扇形的周长是(π+4)厘米。
故答案为:B
【分析】本题考查扇形的周长,明确扇形周长的计算方法是解题的关键。
54.B
【分析】把饲养场养鸭的数量看作单位“1”,养的鸡比鸭多,已知一个数,求比这个数多几分之几的数是多少的计算方法:这个数×(1+分率),鸡的数量=鸭的数量×(1+),据此解答。
【详解】1200×(1+)
=1200×
=1920(只)
所以,今年养的鸡有1920只。
故答案为:B
【分析】掌握求比一个数多几分之几的数是多少的计算方法是解答题目的关键。
55.A
【分析】以原价为单位“1”,涨价后的价格是(1+10%),又以涨价后的价格为单位“1”,降价后的价格是涨价后价格的(1-10%),根据分数乘法的意义求出现在的价格,然后与1比较即可做出判断.
【详解】假设原价为1,
现价:(1+10%)×(1-10%)
=1.1×0.9
=0.99
1>0.998
所以现价比原价便宜.
故答案为A
56.B
【分析】由于正方形大小相等;第一个图形阴影部分面积=正方形面积-圆的面积,圆的直径是正方形的边长;第二个图形,上下两个半圆可以拼成一个圆,它的直径是正方形的边长,则阴影部分的面积=正方形的面积-圆的面积;第三个图形的空白部分是4个的圆,把它们拼在一起可以拼成一个整圆,圆的直径是正方形的边长,由此即可知道阴影部分的面积=正方形的面积-圆的面积;由此即可知道三个图形的阴影部分都是正方形面积减去圆的面积,圆的直径和正方形的边长相等,所以阴影部分面积相等,据此即可选择。
【详解】由分析可知:
阴影部分的面积相等。
故答案为:B
【分析】本题主要考查圆的面积以及图形的拼接,熟练掌握圆的面积并灵活运用。
57.D
【分析】先将四个选项中的算式化简,同时把除法算式转化成乘法算式;四个算式中第一个因数都是88,根据一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小;筛选出得数大于88的算式,再根据分数比较大小的方法,对第二个因数进行比较,这个因数大的,算式的积就大;据此找出计算结果最大的算式。
【详解】A.
因为,所以;
B.
因为,所以;
C.
因为,所以;
D.
因为,所以;
综上所述,只有选项A、D的计算结果大于88,比较选项A、D即可。
因为,则,所以。
计算结果最大的是。
故答案为:D
【分析】本题考查分数乘除法的计算法则、积与因数之间大小关系以及分数大小比较方法,需要熟练掌握。
58.D
【分析】推导圆的面积公式时,沿着半径将圆分成若干份,再拼成一个近似长方形。近似长方形的长是圆周长的一半,宽是圆的半径。据此解题。
【详解】在推导圆的面积公式时,把一个圆分成若干等份后,拼成一个近似的长方形,这个长方形的长是圆周长的一半。
故答案为:D
【分析】本题考查了圆的面积,掌握圆面积的推导过程是解题的关键。
59.B
【分析】假设这袋面粉质量是10千克,将这袋面粉质量看作单位“1”,先吃,这袋面粉质量×=吃掉的质量,面粉质量-吃掉的质量=剩下的质量;再将剩下的面粉质量看作单位“1”,剩下的面粉质量×=再加进的质量,比较吃掉和加进的面粉质量即可。
【详解】假设这袋面粉质量是10千克。
先吃:10×=2.5(千克)
还剩:10-2.5=7.5(千克)
加进:7.5×=1.875(千克)
2.5>1.875,即吃掉的多,加进去的少,所以现在这袋面粉比原来轻。
故答案为:B
【分析】关键是确定单位“1”,理解分数乘法的意义。
60.A
【分析】把这根绳子的长度看作单位“1”,小明剪去了,则还剩下(1-),即;>,剩下的即使全被小亮剪了,小明剪去的也比小亮剪去的长,据此解答。
【详解】1-=;
小亮剪去的小于或等于;
>,所以小明剪去的长。
一根绳子,小明剪去了,小亮又剪去了2米。下面说法正确的是小明剪去的长。
故答案为:A
【分析】小亮剪去的长度看作一个干扰条件,关键是看小亮剪去了几分之几。
61.C
【分析】假设出三个小圆的直径,根据求出各圆的周长,最后计算三个小圆的周长和并与大圆的周长比较大小,据此解答。
【详解】如图假设三个小圆的直径为d1、d2、d3
大圆周长:=
小圆周长和:
=
=
由上可知,大圆周长=三个小圆的周长和。
故答案为:C
【分析】掌握圆的周长计算公式是解答题目的关键。
62.C
【分析】根据可能性的大小以及随机事件的定义,以及三角形内角和的特征分别判断即可解答。
【详解】A.正反面朝上的可能性:1÷2= ,所以扔一枚硬币,正面和反面朝上可能性相等的;原题干说法错误;
B.下个星期一下不下雪是不能确定的,原题干说法错误;
C.三角形内角和是180°,在平面上,三角形内角和等于180°,原题干说法正确。
故答案选:C
【分析】本题根据事件的可能性和三角形内角和的特征解答问题。
63.C
【详解】略
64.B
【分析】由图可知,70米是x米的,根据已知一个数的几分之几是多少,求这个数用除法计算;用70除以即可。
【详解】求“x”是多少列式为:
70÷=70×=98(米)
故答案为:B
【分析】此题考查了分数除法的计算,关键能够结合条件理解题目再解答。
65.D
【分析】先把百分数、分数化为小数,再根据小数比较大小的方法进行比较即可,小数的大小比较必须先比较整数部分,若整数部分不同,整数部分按照整数比较大小的方法来比较,若整数部分相同,先比较小数部分的十分位,若十分位上的数字相同,再比较百分位,依此类推。循环小数:一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫循环小数。把循环小数展开到能比较大小的位数,再来比较大小。
【详解】31.4%=0.314
π=3.1415926…
=
0.314<3.14<3.1415926…<
31.4%<3.14<π<
所以最大的是。
故答案为:D
【分析】本题考查了小数、分数和百分数比较大小的方法。
66.C
【分析】三角形的内角和为180°,进一步直接利用按比例分配求得份数最大的角即可,继而判断出三角形的类别。
【详解】1+1+3=5,
最大角:180°×=108°,
因为最大角是钝角,所以该三角形是钝角三角形。
故答案为:C
【分析】此题主要利用三角形的内角和与按比例分配来解答问题。
67.B
【分析】可以假设商品原价是100元,由于先提价10%,则此时的价格相当于原价的1+10%;那么此时的价格是:100×(1+10%),由于又降价10%,那么此时的价格相当于提价后价格的1-10%,单位“1”已知,用乘法,即此时的价格是:100×(1+10%)×(1-10%),算出此时的价格和原价对比即可。
【详解】假设原价是100元。
100×(1+10%)×(1-10%)
=100×110%×90%
=110%×90%
=99(元)
99<100
所以现价与原价相比降低了。
故答案为:B
【分析】本题主要考查比一个数多百分之几的数是多少,熟练掌握它的运算方法并灵活运用。
68.C
【分析】根据1千克=1000克,则把10克药溶解在1千克水中,此时的药水的重量为(1000+10)克,然后用药的质量比上药水的质量,再进行化简即可。
【详解】10∶(1000+10)
=10∶1010
=(10÷10)∶(1010÷10)
=1∶101
则药与药水的比是1∶101。
故答案为:C
【分析】本题考查比的意义,求出药水的质量是解题的关键。
69.C
【分析】根据题意,用同样长的铁丝围成长方形、正方形和圆形,那么铁丝的长度等于这些图形的周长。
根据长方形的长、宽之和=周长÷2,长方形的面积=长×宽,求出长方形的面积;
根据正方形的边长=周长÷4,正方形的面积=边长×边长,求出正方形的面积;
根据圆的半径r=C÷π÷2,圆的面积公式S=πr2,求出圆的面积;
然后比较三个图形的面积,得出面积最大的图形。
【详解】设这根铁丝长6.28厘米。
①长方形的长、宽之和:6.28÷2=3.14(厘米)
设长方形的长是2厘米,宽是1.14厘米;
长方形的面积:2×1.14=2.28(平方厘米)
②正方形的边长:6.28÷4=1.57(厘米)
正方形的面积:1.57×1.57=2.4649(平方厘米)
③圆的半径:6.28÷3.14÷2=1(厘米)
圆的面积:3.14×1×1=3.14(平方厘米)
3.14>2.4649>2.28
圆的面积>正方形的面积>长方形的面积
围成的图形面积最大的是圆形。
故答案为:C
【分析】明确周长相等的长方形、正方形和圆,其中圆的面积最大,长方形的面积最小。
70.D
【分析】在平面图形中,当周长一定时,所围成的图形越接近圆形,其面积就越大,据此分析。
【详解】用6.28米长的铁丝分别围成长方形、平行四边形、三角形、圆,面积最大的是圆。
故答案为:D
【分析】关键是掌握并理解周长和面积的意义及求法。
71.B
【分析】周长是指封闭图形一周的长度。半圆的周长等于该圆周长的一半加上一条直径的长度,根据圆的周长公式C=2πr,圆的直径d=2r,据此解答。
【详解】2πr÷2+d=πr+2r
一个半圆,它的半径是r,这个半圆的周长是πr+2r。
故答案为:B
【分析】理解掌握周长的意义及半圆周长公式,明确半圆的周长是由哪几部分组成是解题的关键。
72.B
【分析】合格率=期末数学检测合格人数÷全班人数×100%;合格率最高是100%,据此分析解答。
【详解】A.因为全班同学共同努力,这次全班数学检测合格率达到了2%,不符合实际;
B.96%,接近100%,符合实际;
C.合格率最大是100%,120%是不可能的。
故答案选:B
【分析】本题考查求一个数是另一个数的百分之几(百分率问题)。
73.A
【分析】自然数是指用以计量事物的件数或表示事物次序的数,即用0、1、2、3、4……所表示的数;一个数(0除外)乘比1小且不为0的数,积比原数小;一个数(0除外)除以一个比1小且不为0的数,商比原数大;1除以一个不为0的自然数,结果小于等于这个数。
【详解】当a是一个不为0的自然数时,a÷>a;a×<a;1÷a≤a
算式结果最大的是a÷;
故答案为:A
【分析】此题考查了分数乘、除法的计算,关键能理解算理快速比较。
74.A
【分析】在推导圆的周长公式时,因为圆的周长是一条曲线,所以我们那卷尺或皮尺等直接绕一圈量出长度,或者用线在圆形物体上绕一圈,量出线的长度,不管用哪种方法,都是采用的是化曲为直。
【详解】圆的周长是一条曲线,所以测量圆的周长用到的方法化曲为直。
故答案为:A
【分析】此题考查的是圆周长公式的推导方法和过程。
75.C
【分析】例如:圆的面积公式推导过程。
转化图形:把一个圆形平均分成若干等份,剪开拼成一个近似的长方形;
寻找关系:这个长方形的宽等于圆的半径r,长等于圆的周长的一半πr,圆的面积等于长方形的面积;
推导公式:根据长方形的面积公式S=ab可得,圆的面积S=πr×r=πr2。
【详解】本学期,我们探究了圆的面积计算公式,五年级我们探究了平行四边形、三角形和梯形的面积计算公式,我们都经历了“转化图形——寻找关系——推导公式”的研究过程。
故答案为:C
【分析】本题考查转化思想在数学中的应用,掌握图形转换和面积公式推导的过程是解题的关键。
76.C
【分析】根据被除数=商×除数,一个因数=积÷另一个因数,据此求出a和b,再比较即可。
【详解】a: 1×=
b: 1÷
=1×
=
所以a=b
故答案为:C
【分析】解答本题的关键是:根据乘除法各部分之间的关系求出a和b的值。
77.C
【分析】大圆和小圆半径的比是2∶1;设小圆的半径为r,则大圆的半径就是2r,利用圆的面积公式S=πr2,分别求得大小圆的面积,进而求出大、小圆面积的比。
【详解】解:设小圆的半径为r,则大圆的半径就是2r。
大圆的面积为:π(2r)2=4πr2
小圆的面积为:πr2
所以大圆的面积和小圆的面积的比是:(4πr2)∶(πr2)=4∶1。
故答案为:C
【分析】此类问题可以把小圆与大圆的半径分别用相应的数字或字母代替,然后利用圆的面积公式分别表示出大圆与小圆的面积进行解答。
78.D
【分析】根据“每人分个”及分数除法的意义解答即可。
【详解】由“每人分个”可知:4×2中的“2”表示1个橙子分给2人。
故答案为:D
【分析】本题主要考查学生对分数除法运算的理解。
79.A
【解析】四个袋子中装的都是一些黄球和蓝球,摸出黄球算获奖,A袋中6个黄球,3个蓝球,黄球的个数>蓝球的个数,摸出黄球的可能性大;B袋中黄球、篮球各4个,摸到黄球、蓝球的可能性相等;C袋中3个黄球、4个蓝球,黄球的个数<蓝球的个数,摸到蓝球的可能性大;D袋中8个黄球,10个蓝球,黄球的个数<蓝球的个数,摸到蓝球的可能性大。
【详解】A.6个黄球,3个蓝球,黄球的个数>蓝球的个数,摸出黄球的可能性大,即获奖的可能性大;
B.4个黄球,4个蓝球,黄球的个数=蓝球的个数,摸出黄球、蓝球的可能性,即获奖与不获奖可能性相等;
C.3个黄球,4个蓝球,黄球的个数<蓝球的个数,摸出黄球的可能性大小,即获奖的可能性小;
D.8个黄球,10个蓝球,黄球的个数<蓝球的个数,摸出黄球的可能性大小,即获奖的可能性小。
故答案为:A
【分析】袋中哪种颜色球的个数多,摸到的可能性就大,反之,摸到的可能性就小。
80.A
【分析】围成平面图形的所有线段的和就是平面图形的周长;而平面图形的面积是指围成的封闭的平面图形面的大小;观察图形,认真分析每个选项中阴影部分的周长和面积,据此即可进行正确解答。
【详解】A.阴影部分和空白部分的周长都等于大圆周长的一半+小圆的周长,阴影部分和空白部分的面积都等于大圆面积的一半;
B.阴影部分和空白部分的面积相等,因为它们是等底等高的两个三角形,周长不相等,空白部分的周长大于阴影部分的周长;
C.空白部分和阴影部分的周长都等于正方形的两条边长的和+一条圆弧的长度,空白部分的面积小于阴影部分的面积。
故答案为:A
【分析】此题主要考查周长及面积的大小比较,认真观察每个图形的特点,对比解答即可。
81.C
【分析】盒子里哪种球的数量多,摸到哪种球的可能性就大,哪种球的数量少,摸出哪种球的可能性就小,从摸出球的情况来看,摸出的白球比红球多得多,可能盒子里的白球比红球多得多,据此分析。
【详解】A.红球比白球多得多,摸出红球的可能性非常大,不符合;
B.白球比红球多一些,摸出白球的可能性大一些,不符合;
C.白球比红球多得多,摸出白球的可能性非常大,符合;
D.白球和红球同样多,摸出白球和红球的可能性一样大,不符合。
故答案为:C
【分析】可能性的大小与事件的基本条件和发展过程等许多因素有关。哪种球的数量多,发生的可能性就大一些。
82.C
【详解】略
83.B
【分析】首先把两种蔬菜占菜地面积的分率比较大小,然后根据哪个分数越大,则这种菜的占地面积最多,据此判断即可。
【详解】30%=
>
种白菜的面积分率大于种萝卜的面积分率,所以种白菜面积大。
故答案为:B
【分析】熟练掌握百分数与分数的互化,分数的大小比较是解题的关键。
84.A
【分析】糖水的质量=糖的质量+水的质量,糖占糖水的百分率=糖的质量÷糖水的质量×100%,据此解答。
【详解】20÷(20+80)×100%
=20÷100×100%
=0.2×100%
=20%
所以糖占糖水的20%。
故答案为:A
【分析】掌握一个数占另一个数百分之几的计算方法是解答题目的关键。
85.B
【分析】把一个物体分成两部分,当较长部分与整体的比是0.618∶1时被称为“黄金比”;然后根据求比值的方法,用比的前项除以比的后项,所得的商就是比值。
【详解】黄金比是0.618∶1,黄金比的比值是0.618∶1=0.618
故答案为:B
【分析】了解“黄金比”的意义是解答本题的关键。
86.A
【分析】根据图形计算出小圆和大圆的直径比,小圆与大圆的周长比等于它们的直径比。
【详解】由图可知,小圆直径=大圆的半径,则小圆直径∶大圆直径=1∶2
所以小圆周长∶大圆周长=小圆直径∶大圆直径=1∶2
故答案为:A
【分析】分析图形计算出两圆的直径比是解答题目的关键。
87.B
【分析】用三角形内角和除以总份数求出每份是多少度,再乘最大角对应的份数即可求出最大角的度数,再进行判断。
【详解】180÷(2+3+1)
=180÷6
=30°
30°×3=90°
所以这个三角形是直角三角形。
故答案为:B
【分析】本题较易,主要考查了按比例分配的知识点,先求出每份是多少度是解答本题的关键,进而求出最大角的度数,进行判断。
88.C
【分析】60表示菊花的盆数,看成单位“1”,表示求比菊花多的是牡丹花;据此解答。
【详解】由分析可得:学校的菊花有60盆,牡丹花有,则牡丹花比菊花多。
故答案为:C
【分析】找准单位“1”,理解的意义是解题的关键。
89.A
【分析】要买56支钢笔,先列出6支装的盒数,用56减去6支装的总支数,再除以10,算出10支装的盒数,找出所有符合要求的数量后用表格表示出来,进而可知一共有多少种不同的买法。
【详解】表格如下:
则可以买1盒6支装的和5盒10支装的或买6盒6支装的和2盒10支装的,共有2种不同的买法。
故答案为:A
【分析】本题考查用列举的方法解决搭配问题,要根据题目的数量关系,找出符合要求的方案。
90.A
【分析】=3.144……,≈3.14159,314%=3.14,≈3.1442857,小数大小比较:先比较两个数的整数部分,整数部分大的那个数就大;整数部分相同时,看它们的小数部分,从高位看起,依数位比较,相同数位上的数大的那个数就大。
【详解】=3.144……
≈3.14159
314%=3.14
≈3.1442857
>>>314%
四个数中最大的是。
故答案为:A
【分析】此题主要考查学生对小数的大小比较,其中循环小数的写法是只写出第一个循环节,在这个循环节的首位和末位加一个圆点,这个圆点叫做循环点。
91.A
【分析】根据倒数的意义:乘积是1的两个数互为倒数;求一个数的倒数就是1除以这个数;小于1的数的倒数大于1。由此解答。
【详解】由分析可知:
小于1的数的倒数大于1即真分数的倒数大于1。
故答案为:A
【分析】此题考查的目的是理解倒数的意义,掌握求一个数的倒数的方法,求一个数的倒数就是1除以这个数。
92.A
【分析】根据一个非零数除以小于1的数大于它本身;乘小于1的数小于它本身,选择即可。
【详解】A. >
B. ≤
C. <
故答案为:A
【分析】掌握因数与积、被除数与商之间的关系是解题关键。也可通过赋值法解答。
93.A
【分析】根据题意,分别求出蜂蜜与水的比,相同份数的蜂蜜,水的份数越少的越甜;据此解答。
【详解】A.蜂蜜是水的,可知蜂蜜与水的比是1∶8;
B.蜂蜜与水的比是1∶10;
C.30克蜂蜜加了270克水,蜂蜜与水的比是30∶270=1∶9;
在蜂蜜份数都是1份的情况下,水为8份时,这一杯最甜;
故答案为:A
【分析】此题考查了分数与比的运用,关键能够统一蜂蜜的份数再比较。
94.A
【分析】一个数(0除外),除以小于1的数,商比原数大;乘小于1的数,积比原数小;除以大于1的数,商比原数小,据此分析。
【详解】A.>6;
B.<6;
C.<6。
故答案为:A
【分析】关键是掌握分数乘除法的计算方法。
95.C
【分析】将PM2.5颗粒的最大直径与人的头发直径做比化简,求出二者的最简整数比。
【详解】2.5∶50=(2.5×0.4)∶(50×0.4)=1∶20,所以,PM2.5颗粒的最大直径与人的头发直径的最简整数比是1∶20。
故答案为:C
【分析】本题考查了比的意义和化简,熟练运用比的性质化简比是解题的关键。
96.D
【分析】根据百分数的知识及圆的知识,结合题意一一分析,即可作出判断。
【详解】A.百分数不能表示具体的数量,因此百分数不能带单位,该选项的说法是错误的,不符合题意;
B.发芽率是指发芽的种子数占种子总数的百分比,该选项的说法是错误的,不符合题意;
C.举例说明,假设有两个数分别是4和0.2,4×0.2=0.8,4÷0.2=20,0.8<20,因此两个数的乘积不一定比这两个数的商大,该选项的说法是错误的,不符合题意;
D.根据圆的周长公式C=πd得:,π是一个固定的数,因此所有圆的周长与直径的比值都相等,该选项的说法是正确的,符合题意。
故答案为:D
【分析】解答本题的关键是掌握百分数的知识以及圆的相关知识,结合题意来求解。
97.B
【分析】大圆和小圆半径的比是3∶1;设小圆的半径为r,则大圆的半径就是3r,利用圆的面积公式S=πr²,分别求得大小圆的面积,进而求出大、小圆面积的关系。
【详解】设小圆的半径为r,则大圆的半径就是2r,
大圆的面积为:π(3r)²=9πr²,
小圆的面积为:πr²,
所以大圆的面积和小圆的面积的比是:(9πr²)∶(πr²)=9∶1
故选:B
【分析】此题考查的是已知半径比求面积比,把小圆与大圆的半径分别用相应的数字或字母代替,然后利用圆的面积公式分别表示出大圆与小圆的面积进行解答是解题关键。
98.D
【分析】一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。
【详解】根据分析可知,满足条件是是第四幅图。
故答案为:D
【分析】此题主要考查学生对扇形的理解与认识,牢记概念,逐一判断即可。
99.D
【分析】乘积为1的两个数互为倒数,除以一个数等于乘这个数的倒数,据此解答。
【详解】,因为与为互为倒数,所以 。
故选择:D
【分析】此题考查了分数除法的计算以及倒数的认识,注意对算式进行灵活变形。
100.C
【分析】由两条半径组成,顶点在圆心的角叫做圆心角。据此进行解答即可。
【详解】A.这个角不是由两条半径组成,顶点不在圆心,所以这个角不是圆心角。
B.这个角一条边是直径,另一条边不是半径,顶点在圆周上,所以这个角不是圆心角。
C.∠AOB是由两条半径组成,顶点在圆心,所以∠AOB是圆心角。
故答案为:C
【分析】明确圆心角的意义是解决此题的关键。姓名
小利
小明
小平
体重(千克)
36
32
35
书包重(千克)
6
4
5
白球
正正丅
红球
下
消毒液使用说明
衣物消毒
机洗、漂洗:在洗剂过程中按1∶52的比加入原液和水。
少年儿童(7-16岁)体重(千克)分类标准
标准体重=(身高-100)×0.9
轻度肥胖:超过标准体重~
中度肥胖:超过标准体重~
重度肥胖:超过标准体重以上
白球
红球
白球
正正丅
红球
下
总数
56
56
6支装
1
6
10支装
5
2
相关试卷
这是一份专题1选择题100题-2023-2024学年四年级数学上册期末备考真题分类汇编(青岛版,山东地区专版),共41页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份专题1选择题98题-2023-2024学年三年级数学上册期末备考真题分类汇编(青岛版,山东地区专版),共42页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份专题1选择题79题-2023-2024学年五年级数学上册期末备考真题分类汇编(青岛版,山东地区专版),共35页。试卷主要包含了选择题等内容,欢迎下载使用。