搜索
    上传资料 赚现金
    英语朗读宝

    人教A版高中数学必修第一册第5章5-5-2第2课时三角恒等变换的应用课时学案

    人教A版高中数学必修第一册第5章5-5-2第2课时三角恒等变换的应用课时学案第1页
    人教A版高中数学必修第一册第5章5-5-2第2课时三角恒等变换的应用课时学案第2页
    人教A版高中数学必修第一册第5章5-5-2第2课时三角恒等变换的应用课时学案第3页
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)必修 第一册5.5 三角恒等变换第2课时学案

    展开

    这是一份人教A版 (2019)必修 第一册5.5 三角恒等变换第2课时学案,共15页。
    2.能够利用三角恒等变换解决几何中的问题以及生活中的实际问题.(数学建模)
    你从等式12sin 20°-32cs 20°= sin 20°cs 60°-cs 20°sin 60°=sin (20°-60°)=-sin 40°的变形化简中发现了什么?
    知识点 辅助角公式
    a sin x+b cs x=a2+b2sin (x+φ)(ab≠0),其中tan φ=ba,φ所在象限由a和b的符号确定.
    若3sin x-cs x=2sin (x+φ),φ∈(-π,π),则φ=________.
    -π6 [因为3sin x-cs x=232sinx-12csx=2sin x-π6,又φ∈(-π,π),所以φ=-π6.]
    类型1 辅助角公式
    【例1】 化简下列各式:
    (1)y=3sin x-3cs x;
    (2)y=cs 2x(sin 2x+cs 2x);
    (3)y=sin x2+π3 +sin x2.
    [解] (1)y=3sin x-3cs x=23sinx·32-csx·12
    =23sinx·cs π6-csx·sin π6=23sin x-π6.
    (2)y=cs 2x(sin 2x+cs 2x)=sin 2x cs 2x+cs22x
    =12sin 4x+1+cs4x2=12sin 4x+12cs 4x+12
    =22sin4x·22+cs4x·22+12
    =22sin4xcs π4+cs4xsin π4+12=22sin 4x+π4+12.
    (3)y=sin x2+π3+sin x2=sin x2cs π3+cs x2sin π3+sin x2
    =32sin x2+32cs x2=3sin x2·32+cs x2·12=3sin x2+π6.
    将三角函数y=f (x)化为f (x)=A sin (ωx+φ)+m的步骤
    (1)将sin x cs x运用二倍角公式化为12sin 2x,对sin2x,cs2x运用降幂公式,对sin(x±α),cs(x±α)运用两角和与差的公式展开.
    (2)将(1)中得到的式子利用a sin α+b cs α=a2+b2·sin (α+φ)化为f (x)=A sin (ωx+φ)+m的形式.
    [跟进训练]
    1.化简:(1)2(cs x-sin x);
    (2)315sin x+35cs x.
    [解] (1)2(cs x-sin x)=2×222csx-22sinx=2cs π4csx-sin π4sinx=2cs π4+x.
    (2)315sin x+35cs x=6532sinx+12csx
    =65sin π3sinx+cs π3csx=65cs x-π3.
    类型2 恒等变换与三角函数的性质
    【例2】 已知函数f (x)=2sin x cs x-23cs2x+3.
    (1)求f (x)的最小正周期和对称中心;
    (2)求f (x)的单调递减区间;
    (3)当x∈π2,π时,求函数f (x)的最大值及取得最大值时x的值.
    思路导引:f (x) 恒等变换 f (x)=A sin (ωx+φ)+k 类比y=sinx 研究其性质.
    [解] (1)f (x)=2sin x cs x-23cs2x+3=sin 2x-3cs 2x=2sin 2x-π3,
    ∴f (x)的最小正周期为2π2=π.
    由2x-π3=kπ(k∈Z),可得x=kπ2+π6(k∈Z),
    ∴函数f (x)的对称中心为kπ2+π6,0(k∈Z).
    (2)由2x-π3∈2kπ+π2,2kπ+3π2(k∈Z),
    可得x∈kπ+5π12,kπ+11π12(k∈Z),
    ∴f (x)的单调递减区间为kπ+5π12,kπ+11π12(k∈Z).
    (3)当x∈π2,π时,2x-π3∈2π3,5π3,
    ∴2x-π3=2π3,即x=π2时,函数f (x)取得最大值,最大值为3.
    应用公式解决三角函数综合问题的步骤
    (1)降幂将解析式化为f (x)=a sin ωx+b cs ωx+k的形式:如将sin x cs x运用二倍角公式化为12sin 2x,利用降幂公式sin2x=1-cs2x2,cs2x=1+cs2x2将解析式化为一次式.
    (2)利用辅助角公式a sin α+b cs α=a2+b2·sin (α+φ)化成f (x)=A sin (ωx+φ)+k的形式.
    (3)将“ωx+φ”看作一个整体研究函数的性质.
    [跟进训练]
    2.(源自湘教版教材)已知函数f (x)=2sin x4cs x4+3cs x2,求函数f (x)的周期、最大值和最小值.
    [解] 因为f (x)=sin x2+3cs x2
    =12+3212sin x2+32cs x2=2sin x2+π3.
    所以f (x)的周期T=2π12=4π.
    当sin x2+π3=1时,f (x)取得最大值2;
    当sin x2+π3=-1时,f (x)取得最小值-2.
    类型3 三角函数在实际问题中的应用
    【例3】 在扇形OPQ中,OP=R,圆心角∠POQ=π3,若将此木料截成如图所示的矩形,试求此矩形面积的最大值.
    [解] 如图,作∠POQ的平分线分别交EF,GH于点M,N,连接OE,设∠MOE=α,α∈0,π6,
    在Rt△MOE中,ME=R sin α,OM=R cs α,
    在Rt△ONH中,NHON=tan π6,得ON=3NH=3R sin α,
    则MN=OM-ON=R(cs α-3sin α).
    设矩形EFGH的面积为S,
    则S=2ME·MN=2R2sin α(cs α-3sin α)
    =R2(sin 2α+3cs 2α-3)=2R2sin 2α+π3-3R2,
    由α∈0,π6,则π3<2α+π3<2π3,
    所以当2α+π3=π2,
    即α=π12时,Smax=(2-3)R2.
    所以矩形面积的最大值为(2-3)R2.
    用三角函数解实际问题应注意以下三点
    (1)充分借助平面几何性质,寻找数量关系;
    (2)注意实际问题中变量的范围;
    (3)重视三角函数有界性的影响.
    [跟进训练]
    3.如图所示,要把半径为R的半圆形木料截成长方形,应怎样截取,才能使△OAB的周长最大?
    [解] 如图,设∠AOB=α,△OAB的周长为l,则AB=R sin α,OB=R cs α,
    ∴l=OA+AB+OB=R+R sin α+R cs α
    =R(sin α+cs α)+R=2R sin α+π4+R.
    ∵0

    相关学案

    高中数学人教A版 (2019)必修 第一册5.5 三角恒等变换第1课时学案:

    这是一份高中数学人教A版 (2019)必修 第一册5.5 三角恒等变换第1课时学案,共13页。

    高中数学第四章 指数函数与对数函数4.4 对数函数第2课时学案设计:

    这是一份高中数学第四章 指数函数与对数函数4.4 对数函数第2课时学案设计,共14页。

    人教A版 (2019)必修 第一册2.2 基本不等式第2课时导学案:

    这是一份人教A版 (2019)必修 第一册2.2 基本不等式第2课时导学案,共16页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map