2023-2024学年安徽省数学九上期末经典模拟试题含解析
展开
这是一份2023-2024学年安徽省数学九上期末经典模拟试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,在中,,,,那么的值等于等内容,欢迎下载使用。
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.一件衣服225元,连续两次降价x%后售价为144元,则x=( )
A.0.2B.2C.8D.20
2.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为( )
A.B.C.D.
3.如图,分别与相切于点,为上一点,,则( )
A.B.C.D.
4.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C( )
A.54°B.27°C.36°D.46°
5.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为( )
A.5.5×103B.55×103C.0.55×105D.5.5×104
6.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为,缆车速度为每分钟米,从山脚下到达山顶缆车需要分钟,则山的高度为( )米.
A.B.
C.D.
7.如图,点D,E分别在△ABC的AB,AC边上,增加下列哪些条件,①∠AED=∠B,②,③,使△ADE与△ACB一定相似( )
A.①②B.②C.①③D.①②③
8.如图,矩形是由三个全等矩形拼成的,与、、、、分别交于点、、、、,设,,的面积依次为、、,若,则的值为( )
A.6B.8C.10D.1
9.如图,在矩形中,,垂足为,设,且,则的长为( )
A.3B.C.D.
10.在中,,,,那么的值等于( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,在Rt△ABC中,∠C=90°,CA=CB=1.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是______.
12.已知∠A=60°,则tanA=_____.
13.将抛物线先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的解析式是______.
14.在直角坐标系中,点A(-7,)关于原点对称的点的坐标是_____.
15.若△ABC∽△A′B′C′,且,△ABC的周长为12cm,则△A′B′C′的周长为_____________.
16.如图,边长为2的正方形ABCD,以AB为直径作⊙O,CF与⊙O相切于点E,与AD交于点F,则△CDF的面积为________________
17.如图,直角三角形ABC中,∠ACB=90°,AB=10, BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F.现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1.若△E1FA1∽△E1BF,则AD= .
18.如图,过轴上的一点作轴的平行线,与反比例函数的图象交于点,与反比例函数,的图象交于点,若的面积为3,则的值为__________.
三、解答题(共66分)
19.(10分)已知木棒垂直投射于投影面上的投影为,且木棒的长为.
(1)如图(1),若平行于投影面,求长;
(2)如图(2),若木棒与投影面的倾斜角为,求这时长.
20.(6分)如图,在△ABC中,BC的垂直平分线分别交BC、AC于点D、E,BE交AD于点F,AB=AD.
(1)判断△FDB与△ABC是否相似,并说明理由;
(2)BC=6,DE=2,求△BFD的面积.
21.(6分)如图,在⊿OAB中,∠OAB=90°.OA=AB=6.将⊿OAB绕点O逆时针方向旋转90°得到⊿OA1B1
(1)线段A1B1的长是 ∠AOA1的度数是
(2)连结AA1,求证:四边形OAA1B1是平行四边形 ;
(3)求四边形OAA1B1的面积 .
22.(8分)已知AB∥CD,AD、BC交于点O.AO=2,DO=3,CD=5,求AB的长.
23.(8分)如图,平面直角坐标系中,一次函数y=x﹣1的图象与x轴,y轴分别交于点A,B,与反比例函数y=的图象交于点C,D,CE⊥x轴于点E,.
(1)求反比例函数的表达式与点D的坐标;
(2)以CE为边作▱ECMN,点M在一次函数y=x﹣1的图象上,设点M的横坐标为a,当边MN与反比例函数y=的图象有公共点时,求a的取值范围.
24.(8分)如图,已知正方形ABCD的边长为8,点E是DC上的一动点,过点作EF⊥AE,交BC于点F,连结AF.
(1)证明:△ADE∽△ECF;
(2)若△ADE的周长与△ECF的周长之比为4:3,求BF的长.
25.(10分)如图,四边形ABCD是矩形,AB=6,BC=4,点E在边AB上(不与点A、B重合),过点D作DF⊥DE,交边BC的延长线于点F.
(1)求证:△DAE∽△DCF.
(2)设线段AE的长为x,线段BF的长为y,求y与x之间的函数关系式.
(3)当四边形EBFD为轴对称图形时,则cs∠AED的值为 .
26.(10分)如图,平行四边形ABCD的顶点A在y轴上,点B、C在x轴上;OA、OB长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB,BC=6;
(1)写出点D的坐标 ;
(2)若点E为x轴上一点,且S△AOE=,
①求点E的坐标;
②判断△AOE与△AOD是否相似并说明理由;
(3)若点M是坐标系内一点,在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、D
【分析】根据该衣服的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.
【详解】解:依题意,得:225(1﹣x%)2=144,
解得:x1=20,x2=180(不合题意,舍去).
故选:D.
本题考查一元二次方程的应用,根据题意得出关于x的一元二次方程是解题关键.
2、B
【分析】让白球的个数除以球的总数即为摸到白球的概率.
【详解】解:6个黑球3个白球一共有9个球,所以摸到白球的概率是.
故选:B.
本题考查了概率,熟练掌握概率公式是解题的关键.
3、A
【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,最后根据圆周角定理解答.
【详解】解:连接OA,OB,
∵PA,PB分别与⊙O相切于A,B点,
∴∠OAP=90°,∠OBP=90°,
∴∠AOB=360°-90°-90°-66°=114°,
由圆周角定理得,∠C=∠AOB=57°,
故选:A.
本题考查的是切线的性质、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半是解题的关键.
4、C
【分析】先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后利用圆周角解答即可.
【详解】解:∵OA=OB,
∴∠OBA=∠OAB=54°,
∴∠AOB=180°﹣54°﹣54°=72°,
∴∠ACB=∠AOB=36°.
故答案为C.
本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.
5、D
【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值
相关试卷
这是一份鲍沟中学2023-2024学年九上数学期末经典模拟试题含答案,共9页。试卷主要包含了下列二次函数中,顶点坐标为,下列函数是关于的反比例函数的是,若,则的值为等内容,欢迎下载使用。
这是一份安徽省合肥市四十二中学2023-2024学年九上数学期末经典模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,已知点A,若点,一元二次方程的根的情况为等内容,欢迎下载使用。
这是一份天津市2023-2024学年九上数学期末经典模拟试题含答案,共9页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。