终身会员
搜索
    上传资料 赚现金
    专题1.24 全等三角形几何模型(手拉手)(分层练习)(综合练)-2023-2024学年八年级数学上册专题讲与练(苏科版)
    立即下载
    加入资料篮
    专题1.24 全等三角形几何模型(手拉手)(分层练习)(综合练)-2023-2024学年八年级数学上册专题讲与练(苏科版)01
    专题1.24 全等三角形几何模型(手拉手)(分层练习)(综合练)-2023-2024学年八年级数学上册专题讲与练(苏科版)02
    专题1.24 全等三角形几何模型(手拉手)(分层练习)(综合练)-2023-2024学年八年级数学上册专题讲与练(苏科版)03
    还剩38页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题1.24 全等三角形几何模型(手拉手)(分层练习)(综合练)-2023-2024学年八年级数学上册专题讲与练(苏科版)

    展开
    这是一份专题1.24 全等三角形几何模型(手拉手)(分层练习)(综合练)-2023-2024学年八年级数学上册专题讲与练(苏科版),共41页。

    △ABC 和 △CDE 均为等边三角形,点 C 为公共顶点,如图一:
    结论:△ACE ≌ △BCD .

    图一 图二
    模型二:等腰三角形
    等腰 △ABC 和等腰 △CDE,点 C 是公共顶点,∠ACB = ∠DCE = a , 如图二:
    结论:△ACD ≌ △BCE .
    除了以上二个模型外,还有正方形等等
    一、单选题
    1.如图,C为线段AE上一动点(不与点,重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下结论错误的是( )

    A.∠AOB=60°B.AP=BQ
    C.PQ∥AED.DE=DP
    2.如图,正和正中,B、C、D共线,且,连接和相交于点F,以下结论中正确的有( )个

    ① ②连接,则平分 ③ ④
    A.4 B.3 C.2 D.1
    3.如图,在直线AC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD交于点H,AE与DB交于点G,BE与CD交于点F,下列结论:①AE=CD;②∠AHD=60°;③△AGB≌△DFB;④BH平分∠GBF;⑤GF∥AC;⑥点H是线段DC的中点.正确的有( )

    A.6个 B.5个 C.4个 D.3个
    4.如图,,,三点在同一直线上,,都是等边三角形,连接,,:下列结论中正确的是( )
    ①△ACD≌△BCE;
    ②△CPQ是等边三角形;
    ③平分;
    ④△BPO≌△EDO.
    A.①② B.①②③ C.①②④ D.①②③④
    5.如图,点C是线段AE上一动点(不与A,E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,有以下5个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中一定成立的结论有( )个
    A.1 B.2 C.3 D.4
    6.如图,在中,,点D、F是射线BC上两点,且,若,;则下列结论中正确的有( )
    ①;②;③;④
    A.1个 B.2个 C.3个 D.4个
    二、填空题
    7.如图,C为线段上一动点(不与点A、E重合),在同侧分别作正和正,与交于点O,与交于点,与交于点,连接.以下五个结论:①;②;③;④;⑤.
    恒成立的结论有 .(把你认为正确的序号都填上)
    8.如图,是边长为5的等边三角形,,.E、F分别在AB、AC上,且,则三角形AEF的周长为 .
    9.在△ABC中,点D是直线BC上一动点, 连接AD,在直线的右侧作等边,连接CE,当线段CE的长度最小时,线段的长度为 .

    10.如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D为三角形右侧外一点.且∠BDC=45°.连接AD,若△ACD的面积为,则线段CD的长度为 .
    11.如图,点B、C、E在同一条直线上,与都是等边三角形,下列结论:①AE=BD;②;③线段AE和BD所夹锐角为80°;④FG∥BE.其中正确的是 .(填序号)
    12.如图,CA=CB,CD=CE,∠ACB=∠DCE=50°,AD、BE交于点H,连接CH,则∠CHE= .
    13.在锐角三角形ABC中,AH是边BC的高,分别以AB,AC为边向外作正方形ABDE和正方形ACFG,连接CE,BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC.其中正确的是 .
    如图,正三角形和,A,C,E在同一直线上,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的结论有 .并写出3对全等三角形 .
    15.如图,C在线段AB上,在AB的同侧作等边三角形△ACM和△BCN,连接AN,BM,若∠MBN=38°,则∠ANB= .

    16.如图,,,,和相交于,和相交于,则的度数是 °.
    三、解答题
    17.如图,为任意三角形,以边、为边分别向外作等边三角形和等边三角形,连接、并且相交于点.
    求证:(1); (2).
    18.如图,△ABC和△EBD都是等边三角形,连接AE,CD.求证:AE=CD.

    19.如图,在中,,,点O是中点,,将绕点O旋转,的两边分别与射线、交于点D、E.
    (1) 当转动至如图一所示的位置时,连接,求证:;
    (2) 当转动至如图二所示的位置时,线段、、之间有怎样的数量关系?请说明理由.
    20.如图,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A,D,E在同一条直线上,连接BE.
    (1)求证:AD=BE;
    (2)若∠CAE=15°,AD=4,求AB的长.

    21.如图,在△ABC中,AB=BC,∠ABC=120°,点D在边AC上,且线段BD绕着点B按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.
    (1)求证:AE=CD;
    (2)若∠DBC=45°,求∠BFE的度数.

    22.如图,点C是线段AB上任意一点(点C与点A,B不重合),分别以AC,BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N.连接MN.
    证明:(1)△ACE≌△DCB; (2)△ACM≌△DCN; (3)MN∥AB.

    23.在学习全等三角形知识时、教学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通过资料查询,他们得知这种模型称为“手拉手模型” 兴趣小组进行了如下探究:
    (1)如图1,两个等腰三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE,连接BD、CE、如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,这个就是“手拉手模型”,在这个模型中,和△ADB全等的三角形是 ,此时BD和CE的数量关系是 ;
    (2)如图2,两个等腰直角三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE=90°,连接BD,CE,两线交于点P,请判断线段BD和CE的数量关系和位置关系,并说明理由;
    (3)如图3,已知△ABC,请完成作图:以AB、AC为边分别向△ABC外作等边△ABD和等边△ACE(等边三角形三条边相等,三个角都等于60°),连接BE,CD,两线交于点P,并直接写出线段BE和CD的数量关系及∠PBC+∠PCB的度数.
    24.在学习全等三角形的知识时,数学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成的,在相对位置变化的同时,始终存在一对全等三角形.兴趣小组成员经过研讨给出定义:如果两个等腰三角形的顶角相等,且顶角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,可以形象地看作两双手,所以通常称为“手拉手模型”.
    如图,与都是等腰三角形,,,且,则有 ___________≌___________.
    如图,已知,以为边分别向外作等边和等边并连接,则 ___________°.
    如图,在两个等腰直角三角形和中,,,连接,交于点P,请判断和的关系,并说明理由.
    参考答案:
    1.D
    【分析】利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,得出A正确;根据△CQB≌△CPA(ASA),得出B正确;由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,得出C正确;根据∠CDE=60°,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,可知∠DQE≠∠CDE,得出D错误.
    解:∵等边△ABC和等边△CDE,
    ∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
    ∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
    在△ACD与△BCE中,

    ∴△ACD≌△BCE(SAS),
    ∴∠CBE=∠DAC,
    又∵∠ACB=∠DCE=60°,
    ∴∠BCD=60°,即∠ACP=∠BCQ,
    又∵AC=BC,
    在△CQB与△CPA中,

    ∴△CQB≌△CPA(ASA),
    ∴CP=CQ,
    又∵∠PCQ=60°可知△PCQ为等边三角形,
    ∴∠PQC=∠DCE=60°,
    ∴PQ∥AE,
    故C正确,
    ∵△CQB≌△CPA,
    ∴AP=BQ,
    故B正确,
    ∵AD=BE,AP=BQ,
    ∴AD-AP=BE-BQ,
    即DP=QE,
    ∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,
    ∴∠DQE≠∠CDE,故D错误;
    ∵∠ACB=∠DCE=60°,
    ∴∠BCD=60°,
    ∵等边△DCE,
    ∠EDC=60°=∠BCD,
    ∴BC∥DE,
    ∴∠CBE=∠DEO,
    ∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,
    故A正确.
    故选:D.
    【点拨】本题考查了等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,解题的关键是找到不变量.
    2.A
    【分析】根据“手拉手”模型证明,从而得到,再结合三角形的外角性质即可求解,即可证明①;作于点,于点,证明,结合角平分线的判定定理即可证明②;利用面积法表示和的面积,然后利用比值即可证明③;利用“截长补短”的思想,在上取点,使得,首先判断出为等边三角形,再结合“手拉手”模型推出即可证明④.
    解:①∵和均为等边三角形,
    ∴,,,
    ∴,
    ∴,
    在和中,
    ∴,
    ∴,
    ∵,,
    ∴,故①正确;
    ②如图所示,作于点,于点,
    则,
    ∵,
    ∴,
    在和中,
    ∴,
    ∴,
    ∴平分,故②正确;
    ③如图所示,作于点,
    ∵,,
    ∴,
    ∵,
    ∴整理得:,
    ∵,
    ∴,
    ∴,故③正确;
    ④如图所示,在上取点,使得,
    ∵,平分,
    ∴,,
    ∴为等边三角形,
    ∴,,
    ∵,
    ∴,
    ∴,
    在和中,
    ∴,
    ∴,
    ∵,,
    ∴,故④正确;
    综上,①②③④均正确;
    故选:A.
    【点拨】本题考查等边三角形的判定与性质,全等三角形的判定与性质等,理解等边三角形的基本性质,掌握全等三角形中的辅助线的基本模型,包括“手拉手”模型,截长补短的思想等是解题关键.
    3.C
    【分析】连接GF,过点B作BM⊥AE于M,BN⊥CD于N;结合题意,利用等边三角形、全等三角形的性质,推导得AE=CD,∠AHD=∠ABG=60°;再根据等边三角形、角平分线的性质分析,即可得到答案.
    解:连接GF,过点B作BM⊥AE于M,BN⊥CD于N
    ∵△ABD,△BCE都是等边三角形,
    ∴∠ABD=∠EBC=60°,BA=BE,BE=BC,
    ∴∠ABE=∠DBC,
    在△ABE和△DBC中,

    ∴△ABE≌△DBC(SAS),
    ∴AE=CD,故①正确;
    ∵△ABE≌△DBC,
    ∴∠BAE=∠BDC,
    ∵∠AGB=∠DGH,
    ∴∠AHD=∠ABG=60°,故②正确;
    在△AGB和△DFB中,

    ∴△AGB≌△DFB(ASA),故③正确;
    ∵△AGB≌△DFB,
    ∴BG=BF,
    ∵∠GBF=60°,
    ∴△BGF是等边三角形,
    ∴∠FGB=∠ABD=60°,
    ∴FG∥AC,故⑤正确;
    ∵△ABE≌△DBC,BM⊥AE,BN⊥CD,
    ∴BM=BN,
    ∴BH平分∠AHC,但不一定平分∠GBF,故④错误;
    根据题意,无法判断DH=CH,故⑥错误.
    故选:C.
    【点拨】本题考查了等边三角形、全等三角形、角平分线的知识;解题的关键是熟练掌握全等三角形、等边三角形、角平分线的性质,从而完成求解.
    4.B
    【分析】利用等边三角形的性质,三角形的全等,逐一判断即可.
    解:∵△ABC,△CDE都是等边三角形,
    ∴CA=CB,CD=CE,∠ACB=∠ECD=60°,
    ∴∠ACB+∠PCQ =∠ECD+∠PCQ,∠PCD=60°,
    ∴∠ACD =∠BCE,
    ∴△ACD≌△BCE,
    ∴①的说法是正确的;
    ∵△ACD≌△BCE,
    ∴∠PDC =∠QEC,
    ∵∠PCD=∠QCE=60°,CD=CE,
    ∴△PCD≌△QCE,
    ∴PC=QC,
    ∴△CPQ是等边三角形;
    ∴②的说法是正确的;
    ∵△PCD≌△QCE,
    ∴PD=QE,,
    过点C作CG⊥PD,垂足为G,CH⊥QE,垂足为H,
    ∴,
    ∴CG=CH,
    ∴平分,
    ∴③的说法是正确的;
    无法证明△BPO≌△EDO.
    ∴④的说法是错误的;
    故答案为①②③,
    故选B.
    【点拨】本题考查了等边三角形的性质与判定,三角形的全等与性质,角平分线的性质定理,熟练掌握等边三角形的性质,灵活进行三角形全等的判定,活用角的平分线性质定理的逆定理是解题的关键.
    5.D
    【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;
    ③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正确;
    ②根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;
    ④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;
    ⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正确.
    解:①∵等边△ABC和等边△DCE,
    ∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60∘,
    ∴∠ACD=∠BCE,
    在△ACD和△BCE中,
    AC=BC,∠ACD=∠BCE,DC=CE,
    ∴△ACD≌△BCE(SAS),
    ∴AD=BE;
    故①正确;
    ③∵△ACD≌△BCE(已证),
    ∴∠CAD=∠CBE,
    ∵∠ACB=∠ECD=60°(已证),
    ∴∠BCQ=180°-60°×2=60°,
    ∴∠ACB=∠BCQ=60°,
    在△ACP与△BCQ中,
    ∠CAD=∠CBE,AC=BC,∠ACB=∠BCQ=60°,
    ∴△ACP≌△BCQ(ASA),
    ∴AP=BQ;
    故③正确;
    ②∵△ACP≌△BCQ,
    ∴PC=QC,
    ∴△PCQ是等边三角形,
    ∴∠CPQ=60∘,
    ∴∠ACB=∠CPQ,
    ∴PQ∥AE;
    故②正确;
    ④∵AD=BE,AP=BQ,
    ∴AD−AP=BE−BQ,
    即DP=QE,
    ∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,
    ∴∠DQE≠∠CDE,
    ∴DE≠QE,
    则DP≠DE,故④错误;
    ⑤∵∠ACB=∠DCE=60°,
    ∴∠BCD=60°,
    ∵等边△DCE,
    ∠EDC=60°=∠BCD,
    ∴BC∥DE,
    ∴∠CBE=∠DEO,
    ∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.
    故⑤正确;
    综上所述,正确的结论有:①②③⑤,错误的结论只有④,
    故选D.
    【点拨】本题考查全等三角形的判定和性质,以及等边三角形的判定和性质,此图形是典型的“手拉手”模型,熟练掌握此模型的特点是解题的关键.
    6.D
    【分析】由AD⊥AF,∠BAD=∠CAF,得出∠BAC=90°,由等腰直角三角形的性质得出∠B=∠ACB=45°,由SAS证得△ABD≌△ACE(SAS),得出BD=CE,∠B=∠ACE=45°,S△ABC=S四边形ADCE,则∠ECB=90°,即EC⊥BF,易证∠ADF=60°,∠F=30°,由含30°直角三角形的性质得出EF=2CE=2BD,DF=2AD,则BD=EF,由BC-BD=DF-CF,得出BC-EF=2AD-CF,即可得出结果.
    解:∵AD⊥AF,∠BAD=∠CAF,
    ∴∠BAC=90°,
    ∵AB=AC,
    ∴∠B=∠ACB=45°,
    在△ABD和△ACE中,

    ∴△ABD≌△ACE(SAS),
    ∴BD=CE,∠B=∠ACE=45°,S△ABC=S四边形ADCE,
    ∴∠ECB=90°,
    ∴EC⊥BF,
    ∵∠B=45°,∠BAD=15°,
    ∴∠ADF=60°,
    ∴∠F=30°,
    ∴EF=2CE=2BD,DF=2AD,
    ∴BD=EF,
    ∵BC-BD=DF-CF,
    ∴BC-EF=2AD-CF,
    ∴①、②、③、④正确.
    故选:D.
    【点拨】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、含30°角直角三角形的性质、外角的定义等知识,熟练掌握直角三角形的性质、证明三角形全等是解题的关键.
    7.①②③⑤
    【分析】①由于和是等边三角形,可知,,,从而证出,可推知;②由得,和,,得到,再根据推出为等边三角形,又由,根据内错角相等,两直线平行,可知②正确;③同②得:,即可得出结论;④根据,,可知,可知④错误;⑤利用等边三角形的性质,,再根据平行线的性质得到,于是,可知⑤正确.
    解:①和为等边三角形,
    ,,,

    在和中,,

    ,,①正确;
    ②,
    在和中,,




    ,②正确;
    ③同②得:,
    ,③正确;
    ④,且,
    ,故④错误;
    ⑤,

    是等边三角形,




    ⑤正确;
    故答案为:①②③⑤.
    【点拨】本题考查了等边三角形的性质、全等三角形的判定与性质,解题的关键是熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.
    8.10
    【分析】延长AB到N,使BN=CF,连接DN,求出∠FCD=∠EBD=∠NBD=90°,根据SAS证△NBD≌△FCD,推出DN=DF,∠NDB=∠FDC,求出∠EDF=∠EDN,根据SAS证△EDF≌△EDN,推出EF=EN,易得△AEF的周长等于AB+AC.
    解:延长AB到N,使BN=CF,连接DN,
    ∵△ABC是等边三角形,
    ∴∠ABC=∠ACB=60°,
    ∵BD=CD,∠BDC=120°,
    ∴∠DBC=∠DCB=30°,
    ∴∠ACD=∠ABD=30°+60°=90°=∠NBD,
    ∵在△NBD和△FCD中,

    ∴△NBD≌△FCD(SAS),
    ∴DN=DF,∠NDB=∠FDC,
    ∵∠BDC=120°,∠EDF=60°,
    ∴∠EDB+∠FDC=60°,
    ∴∠EDB+∠BDN=60°,
    即∠EDF=∠EDN,
    在△EDN和△EDF中,

    ∴△EDN≌△EDF(SAS),
    ∴EF=EN=BE+BN=BE+CF,
    即BE+CF=EF.
    ∵△ABC是边长为5的等边三角形,
    ∴AB=AC=5,
    ∵BE+CF=EF,
    ∴△AEF的周长为:AE+EF+AF=AE+EB+FC+AF=AB+AC=10,
    故答案为:10.
    【点拨】本题考查了等边三角形性质和判定,等腰三角形的性质,三角形的内角和定理,全等三角形的性质和判定的综合运用.注意掌握辅助线的作法,注意掌握数形结合思想的应用.
    9.
    【分析】在的左侧作等边三角形,连接、、、,再证明 可得 再利用时,最短,从而可得答案.
    解: 在的左侧作等边三角形,连接、、、,

    则,
    故点、关于对称,
    则,,
    均为等边三角形,
    ,,



    当时,最小,


    故,
    故的长度为,
    故答案为:
    【点拨】本题考查的是等边三角形的性质,全等三角形的判定与性质,垂线段最短,含的直角三角形的性质,灵活运用以上知识解题是解题的关键.
    10.
    【分析】过点B作BE⊥BD,交DC的延长线于点E,连接AE,由题意易得△EBD是等腰直角三角形,然后可证△BCD≌△BEA,则有∠BDC=∠BEA=45°,AE=CD,进而根据三角形面积公式可进行求解.
    解:过点B作BE⊥BD,交DC的延长线于点E,连接AE,如图所示:
    ∵∠ABC=90°,
    ∴,
    ∴,
    ∵∠BDC=45°,∠EBD=90°,
    ∴△EBD是等腰直角三角形,
    ∴∠BDC=∠BED=45°,BE=BD,
    ∵AB=BC,
    ∴△BCD≌△BAE(SAS),
    ∴∠BDC=∠BEA=45°,AE=CD,
    ∴,
    ∵,
    ∴,
    ∴;
    故答案为.
    【点拨】本题主要考查三角形全等的判定与性质及等腰直角三角形的性质与判定,解题的关键是构造旋转型全等,抓住等腰直角三角形的特征.
    11.①②④
    【分析】利用等边三角形的性质证明可判断①,利用,可得利用三角形的外角的性质可得 从而可判断③, 再结合等边三角形的性质证明可判断②, 由可得:,结合可得,从而可判断④.
    解:如图,记与的交点为,
    ∵与都是等边三角形,
    ∴AC=BC,CD=CE,∠BCA=∠DCE=60°
    ∵点B、C、E在同一条直线上,
    ∴∠ACD=60°,
    ∴∠BCD=∠ACE=120°
    在和中,
    ∴,
    所以结论①正确;
    ∵,
    ∴∠BDC=∠CEA,
    ∵∠AHB=∠DBE+∠BEA=∠DBE+∠BDC=180°∠BCD=60°, 所以③错误;
    在和中,

    ∴,
    ∴所以②正确;

    ∵CG=CF,∠ACD=60°,
    ∴∠GFC=60,
    又∵∠DCE=60°,
    ∴∠GFC=∠DCE,
    ∴GF∥BC,所以④正确.
    故答案为:①②④.
    【点拨】本题考查了全等三角形的判定和性质、等边三角形的性质和判定,平行线的判定,解决本题的关键是找到判定三角形全等的条件.
    12.65°
    【分析】先判断出,再判断出即可得到平分,即可得出结论.
    解:如图,,

    在和中,

    过点作于,于,


    在和中,


    在与中


    平分;






    故答案为:.
    【点拨】此题考查了全等三角形的判定与性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
    13.①②③④
    【分析】根据正方形的性质和SAS可证明△ABG≌△AEC,然后根据全等三角形的性质即可判断①;设BG、CE相交于点N,AC、BG相交于点K,如图1,根据全等三角形对应角相等可得∠ACE=∠AGB,然后根据三角形的内角和定理可得∠CNG=∠CAG=90°,于是可判断②;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,根据余角的性质即可判断④;利用AAS即可证明△ABH≌△EAP,可得EP=AH,同理可证GQ=AH,从而得到EP=GQ,再利用AAS可证明△EPM≌△GQM,可得EM=GM,从而可判断③,于是可得答案.
    解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,
    ∴∠BAE+∠BAC=∠CAG+∠BAC,
    即∠CAE=∠BAG,
    ∴△ABG≌△AEC(SAS),
    ∴BG=CE,故①正确;
    设BG、CE相交于点N,AC、BG相交于点K,如图1,
    ∵△ABG≌△AEC,
    ∴∠ACE=∠AGB,
    ∵∠AKG=∠NKC,
    ∴∠CNG=∠CAG=90°,
    ∴BG⊥CE,故②正确;
    过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,
    ∵AH⊥BC,
    ∴∠ABH+∠BAH=90°,
    ∵∠BAE=90°,
    ∴∠EAP+∠BAH=90°,
    ∴∠ABH=∠EAP,即∠EAM=∠ABC,故④正确;
    ∵∠AHB=∠P=90°,AB=AE,
    ∴△ABH≌△EAP(AAS),
    ∴EP=AH,
    同理可得GQ=AH,
    ∴EP=GQ,
    ∵在△EPM和△GQM中,

    ∴△EPM≌△GQM(AAS),
    ∴EM=GM,
    ∴AM是△AEG的中线,故③正确.
    综上所述,①②③④结论都正确.
    故答案为:①②③④.
    【点拨】本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.
    14. ①②③⑤ △ACD≌△BCE,△BCQ≌△ACP,△CDP≌△CEQ
    【分析】①可证明△ACD≌△BCE,从而得出AD=BE;
    ②可通过证明△BCQ≌△ACP,从而可证明△PCQ为等边三角形,再根据内错角相等两直线平行可证明PQ∥AE.
    ③由②中△BCQ≌△ACP,可证AP=BQ;
    ④通过证明△CDP≌△CEQ可得DP=EQ,又由图可知DE>QE,从而④错误;
    ⑤通过三角形外角定理和前面△ACD≌△BCE可得该结论.
    由前面的证明过程可得出三个全等三角形.
    解:①△ABC和△DCE均是等边三角形,点A,C,E在同一条直线上,
    ∴AC=BC,EC=DC,∠BCE=∠ACD=120°
    ∴△ACD≌△BCE
    ∴AD=BE,故本选项正确;
    ②∵△ACD≌△BCE,
    ∴∠CBQ=∠CAP,
    又∵∠PCQ=∠ACB=60°,CB=AC,
    ∴△BCQ≌△ACP,
    ∴CQ=CP,又∠PCQ=60°,
    ∴△PCQ为等边三角形,
    ∴∠QPC=60°=∠ACB,
    ∴PQ∥AE,故本选项正确;
    ③由②△BCQ≌△ACP可得AP=BQ,故本选项正确;
    ④∵△ACD≌△BCE,
    ∴∠ADC=∠BEC,
    ∵CD=CE,∠DCP=∠ECQ=60°,
    ∴△CDP≌△CEQ(ASA).
    ∴DP=EQ,
    ∵DE>QE
    ∴DE>DP,故本选项错误;
    ⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故本选项正确;
    ∴正确的有:①②③⑤.
    由上面证明过程可知△ACD≌△BCE,△BCQ≌△ACP,△CDP≌△CEQ.
    故答案为:①②③⑤;△ACD≌△BCE,△BCQ≌△ACP,△CDP≌△CEQ.
    【点拨】本题考查全等三角形的性质和判定,等边三角形的性质.熟练掌握全等三角形的判定定理,并能依据等边三角形三边相等,三角相等都是60°的特征判断三角形全等是解题关键.
    15.82°
    【分析】根据等边三角形的边相等,角相等,易证△ACN和△MCB全等,则∠ANC和∠MBA相等,∠MBA=60°﹣∠MBN=60°﹣38°=22°,然后可求出∠ANB.
    解:∵△ACM和△BCN是等边三角形,
    ∴AC=MC,CB=CN,∠ACM+∠MCN=∠BCN+∠MCN,
    即∠ACN=∠MCB.
    在△ACN和△MCB中,
    ∴△ACN≌△MCB(SAS).
    ∴∠ANC=∠MBA.
    ∵∠MBA=60°﹣∠MBN=60°﹣38°=22°,
    ∴∠ANC=22°.
    ∴∠ANB=22°+60°=82°.
    故答案为82°.
    【点拨】本题考查全等三角形的判定和性质,本题是典型的“手拉手”模型,应熟练掌握其中全等三角形的证明.
    16.120
    【分析】先得出∠DAC=∠EAB,进而利用ASA得出△ADC≌△AEB,进而得出∠E=∠ACD,再利用三角形内角和定理得出∠EAF=∠COF=60°,即可得出答案.
    解:如图所示:
    ∵∠DAB=∠EAC=60°,
    ∴∠DAB+∠BAC=∠BAC+∠EAC,
    ∴∠DAC=∠EAB,
    在△ADC和△AEB中,
    ,
    ∴△ADC≌△ABE(SAS),
    ∴∠E=∠ACD,
    又∵∠AFE=∠OFC,
    ∴∠EAF=∠COF=60°,
    ∴∠DOE=120°.
    故答案是:120.
    【点拨】考查了全等三角形的判定与性质以及三角形内角和定理等知识,根据已知得出△ADC≌△AEB是解题关键.
    17.(1)见分析;(2)见分析
    【分析】(1)根据等边三角形的性质得出AD=AB,AC=AE,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,求出∠DAC=∠BAE,根据SAS推出△DAC≌△BAE即可;
    (2)根据全等三角形的性质得出∠BEA=∠ACD,求出∠BPC=∠ECP+∠PEC=∠ACE+∠AEC,代入求出即可.
    解:证明:(1)∵以AB、AC为边分别向外做等边△ABD和等边△ACE,
    ∴AD=AB,AC=AE,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,
    ∴∠DAB+∠BAC=∠EAC+∠BAC,
    ∴∠DAC=∠BAE,
    在△DAC和△BAE中,

    ∴△DAC≌△BAE(SAS),
    ∴CD=BE;
    (2)∵△DAC≌△BAE,
    ∴∠BEA=∠ACD,
    ∴∠BPC=∠ECP+∠PEC=∠DCA+∠ACE+∠PEC
    =∠BEA+∠ACE+∠PEC
    =∠ACE+∠AEC
    =60°+60°
    =120°.
    【点拨】本题考查了等边三角形的性质,全等三角形的性质和判定的应用,关键是求出△DAC≌△BAE.
    18.见分析
    【分析】证明△ABE≌△CBD即可解决.
    解:∵△ABC和△EBD都是等边三角形,
    ∴AB=CB,BE=BD,∠ABC=∠DBE=60°,
    ∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,
    即∠ABE=∠CBD,
    在△ABE和△CBD中,

    ∴△ABE≌△CBD(SAS),
    ∴AE=CD.
    【点拨】本题考查了等边三角形的性质,全等三角形的判定与性质等知识,掌握这两部分知识是关键.
    19.(1)见分析;(2)CE﹣CD=AC.理由见分析
    【分析】(1)结论:.连接.证明;
    (2)结论:,证明方法类似(1).
    解:(1)证明:∵,,,
    ∴,,
    ∴,
    ∵,
    ∴,
    在和中,

    ∴.
    (2)解:.
    理由:连接.
    ∵,,,
    ∴,,
    ∴,
    ∴,
    ∵,
    ∴,
    在和中,

    ∴,
    ∴,
    ∴.
    【点拨】本题考查等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
    20.(1)见分析;(2)8
    【分析】(1)直接证明,即可得出结论;
    (2)由(1)可进一步推出为直角三角形,且,从而由求解即可.
    解:(1)△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,
    ,
    在与中,


    (2)是等腰直角三角形,

    由(1)可知,,,


    则在中,,

    【点拨】本题考查全等三角形的判定与性质,及含角的直角三角形的性质,根据“手拉手”模型证明全等,并推导出直角三角形是解题关键.
    21.(1)证明见分析;(2)∠BFE=105°.
    【分析】(1)根据旋转的性质证明△ABE≌△CBD(SAS),进而得证;
    (2)由(1)得出∠DBC=∠ABE=45°,BD=BE,∠EBD=120°,最后根据三角形内角和定理进行求解即可.
    解:(1)证明:∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,
    ∴BD=BE,∠EBD=120°,
    ∵AB=BC,∠ABC=120°,
    ∴∠ABD+∠DBC=∠ABD+∠ABE=120°,
    ∴∠DBC=∠ABE,
    ∴△ABE≌△CBD(SAS),
    ∴AE=CD;
    (2)解:由(1)知∠DBC=∠ABE=45°,BD=BE,∠EBD=120°,
    ∴∠BED=∠BDE=(180°﹣120°)=30°,
    ∴∠BFE=180°﹣∠BED﹣∠ABE
    =180°﹣30°﹣45°=105°.
    【点拨】本题考查了旋转的性质,全等三角形的判定与性质,三角形内角和定理,利用旋转的性质证明是解题的关键.
    22.(1)见分析(2)见分析(3)见分析
    【分析】(1)由等边三角形的性质得出AC=CD,BC=CE,∠ACD=∠BCE=60°,得出∠DCB=∠ACE,由SAS即可得出△ACE≌△DCB;
    (2)由全等三角形的性质得出∠EAC=∠BDC,再证出∠ACD=∠DCE,由ASA证明△ACM≌△DCN即可;
    (3)由全等三角形的性质得出CM=CN,证出△MCN是等边三角形,得出∠MNC=∠NCB=60°,即可得出结论.
    解:(1)∵△ACD和△BCE是等边三角形,
    ∴AC=CD,BC=CE,∠ACD=∠BCE=60°,
    ∴∠ACD+∠DCE=∠BCE+∠DCE,∠DCB=∠ACE,
    在△ACE与△DCB中,

    ∴△ACE≌△DCB(SAS);
    (2)由(1)得:△ACE≌△DCB,
    ∴∠EAC=∠BDC,
    ∵∠ACD=∠BCE=60°,
    ∴∠DCE=60°,
    ∴∠ACD=∠DCE,
    在△ACM与△DCN中,

    ∴△ACM≌△DCN(ASA).
    (3)由(2)得:△ACM≌△DCN,
    ∴CM=CN,
    又∵∠MCN=180°−60°−60°=60°,
    ∴△MCN是等边三角形,
    ∴∠MNC=60°=∠NCB,
    ∴MN∥AB.
    【点拨】本题考查了等边三角形的性质、全等三角形的判定与性质、平行线的判定;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.
    23.(1)△AEC,BD=CE;(2)BD=CE且BD⊥CE,理由见分析;(3)作图见分析,BE=CD,∠PBC+∠PCB=60°.
    【分析】(1)根据SAS证明两个三角形全等即可证明;
    (2)通过条件证明△DAB≌△EAC(SAS),得到∠DBC+∠ECB=90°,即可证明BD⊥CE,从而得到结果;
    (3)根据已知条件证明△DAC≌△BAE(SAS),即可得到结论.
    解:(1)∵AB=AC,AE=AD,∠BAC=∠DAE,
    ∴∠DAE+∠EAB=∠BAC+∠EAB,
    即,
    ∴△ADB≌△AEC(SAS),
    ∴BD=CE;
    (2)BD=CE且BD⊥CE;
    理由如下:因为∠DAE=∠BAC=90°,如图2.
    所以∠DAE+∠BAE=∠BAC+∠BAE.
    所以∠DAB=∠EAC.
    在△DAB和△EAC中,

    所以△DAB≌△EAC(SAS).
    所以BD=CE,∠DBA=∠ECA.
    因为∠ECA+∠ECB+∠ABC=90°,
    所以∠DBA+∠ECB+∠ABC=90°.
    即∠DBC+∠ECB=90°.
    所以∠BPC=180°-(∠DBC+∠ECB)=90°.
    所以BD⊥CE.
    综上所述:BD=CE且BD⊥CE.
    (3)如图3所示,BE=CD,∠PBC+∠PCB=60°.
    由图可知,AD=AB,AE=AC,
    ∴∠DAB+∠BAC=∠EAC+∠BAC,
    即,
    ∴△DAC≌△BAE(SAS),
    ∴BE=CD,,
    又∵,
    ∴∠ADC+∠BDC=∠ABE+∠BDC=60°,
    ∴∠BPC=∠ABP+∠BDC+∠DBA=120°,
    ∴∠PBC+∠PCB=60°.
    【点拨】本题主要考查了全等三角形的知识点应用,准确分析图形是解题的关键.
    24.(1),;(2);(3),,理由见分析
    【分析】(1)根据全等三角形的判定证明即可;
    (2)先根据等边三角形的性质得到,,,再证明得到,再利用的外角性质求得即可求解;
    (3)证明得到,,进而利用三角形的内角和定理证明即可.
    (1)解:,


    在和中,


    故答案为:,;
    (2)解:等边和等边,
    ,,,
    ,即,
    在和中,



    故答案为:;
    (3)证明:,理由:

    ,即,
    在和中,





    ∴.
    【点拨】本题考查等边三角形的性质、全等三角形的判定与性质、三角形的外角性质,熟练掌握“手拉手全等模型”,能找到全等三角形是解答的关键
    相关试卷

    专题12 全等三角形中的手拉手模型(教师版)-中考数学几何模型重点突破讲练: 这是一份专题12 全等三角形中的手拉手模型(教师版)-中考数学几何模型重点突破讲练,共48页。

    专题1.26 全等三角形几何模型(半角模型)(分层练习)(综合练)-2023-2024学年八年级数学上册专题讲与练(苏科版): 这是一份专题1.26 全等三角形几何模型(半角模型)(分层练习)(综合练)-2023-2024学年八年级数学上册专题讲与练(苏科版),共58页。

    专题1.25 全等三角形几何模型(手拉手)(分层练习)(培优练)-2023-2024学年八年级数学上册专题讲与练(苏科版): 这是一份专题1.25 全等三角形几何模型(手拉手)(分层练习)(培优练)-2023-2024学年八年级数学上册专题讲与练(苏科版),共61页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题1.24 全等三角形几何模型(手拉手)(分层练习)(综合练)-2023-2024学年八年级数学上册专题讲与练(苏科版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map