终身会员
搜索
    上传资料 赚现金
    专题2.10 等腰三角形的轴对称性(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版)
    立即下载
    加入资料篮
    专题2.10 等腰三角形的轴对称性(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版)01
    专题2.10 等腰三角形的轴对称性(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版)02
    专题2.10 等腰三角形的轴对称性(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版)03
    还剩12页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题2.10 等腰三角形的轴对称性(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版)

    展开
    这是一份专题2.10 等腰三角形的轴对称性(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版),共15页。

    【知识点一】等腰三角形的定义
    有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.
    如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.

    特别提醒:等腰直角三角形的两个底角相等,且都等于45°.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).
    【知识点二】等腰三角形的性质
    1.等腰三角形的性质
    性质1:等腰三角形的两个底角相等(简称“等边对等角”).
    性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).
    2.等腰三角形的性质的作用
    性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.
    性质2用来证明线段相等,角相等,垂直关系等.
    3.等腰三角形是轴对称图形
    等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.
    【知识点三】等腰三角形的判定
    如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).
    特别提醒:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.
    【考点一】等腰三角形➼➻等腰三角形的定义
    【例1】已知等腰,解答以下问题:
    (1)若有一个内角为,求这个等腰三角形另外两个角的度数;
    (2)若等腰三角形的周长为27,两条边长分别是a和,求三边的长.
    【答案】(1)或; (2)
    【分析】(1)分为等腰三角形的顶角和底角两种情况,根据等腰三角形的性质结合三角形的内角和定理解答即可;
    (2)分若两条边长a和都是腰,一条是腰,另一条是底边两种情况,结合等腰三角形的性质、三角形的三边关系和三角形的周长列出方程,求解即可.
    解:(1)当为等腰三角形的顶角时,则底角为,
    当为等腰三角形的底角时,则顶角为,
    所以这个等腰三角形另外两个角的度数为;
    (2)若两条边长a和都是腰,则,解得,不符合题意,舍去;
    若两条边长a和一条是腰,另一条是底边,分两种情况:
    若a是腰,则为底边,则,解得,
    此时三角形的三边长分别是,
    ∵,
    故此时不能构成三角形,舍去;
    若a是底边,则为腰,则,解得,
    此时三角形的三边长分别是,能构成三角形,
    综上,三角形的三边长分别是.
    【点拨】本题考查了等腰三角形的性质、三角形的三边关系等知识,全面分类、熟练掌握等腰三角形的性质是解题的关键.
    【举一反三】
    【变式1】若a、b是等腰三角形的两边长,且满足关系式,则这个三角形的周长是( )
    A.9 B.12 C.9或12 D.15或6
    【答案】B
    【分析】先根据非负数的性质求出,再分两种情况求解即可.
    解:根据题意,,
    解得,
    (1)若2是腰长,则三角形的三边长为:2、2、5,,不能组成三角形;
    (2)若2是底边长,则三角形的三边长为:2、5、5,能组成三角形,周长为.
    故选:B.
    【点拨】此题考查了等腰三角形、构成三角形的条件、非负数的性质等知识,分类讨论是解题的关键.
    【变式2】如图,在中,,点是射线上一动点(在点的右侧),,当 时,以,,三点为顶点的三角形是等腰三角形.

    【答案】或或
    【分析】先根据题意画出符合的情况,再根据等腰三角形的性质和三角形内角和定理求出即可.
    解:分为以下3种情况:
    ①,

    ∵,

    ∵,


    ②,

    ∵,,
    ∴,
    又,



    ∵,




    综上所述,或或,以,,三点为顶点的三角形是等腰三角形.
    故答案为:或或.
    【点拨】本题考查了等腰三角形的性质和判定、三角形内角和定理等知识点,能画出符合的所有图形是解此题的关键.
    【考点二】等腰三角形➼➻等边对等角★★等角对等边➼➻求值✭★证明
    【例2】如图,在中,,的垂直平分线交于点,交于点,连接.
    (1)若,求的度数;
    (2)若,的周长是,求的长.

    【答案】(1) ; (2)
    【分析】(1)根据等腰三角形的性质得出,求得的度数,根据垂直平分线性质得出,得出,利用外角性质进而求出的度数;
    (2)由(1)知,,利用,即可求出的长.
    (1)解:,


    是的垂直平分线,



    (2)由(1)知,



    的周长是,即,

    【点拨】本题考查了等腰三角形的性质,线段的垂直平分线性质,三角形内角和定理,三角形外角性质,熟练掌握这些性质定理是解答本题的关键.
    【举一反三】
    【变式】如图,在中,,,于点,点在上且,
    (1)若的周长是,求线段的长;
    (2)求的度数.

    【答案】(1) ;(2)
    【分析】(1)证明点是的中点,,从而可得答案;
    (2)证明,求解,证明,结合,可得,从而可得答案.
    (1)解:∵,于点,
    ∴点是的中点,
    ∵的周长是,,
    ∴,
    ∴;
    (2)∵,,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴.
    【点拨】本题考查的是三角形的内角和定理的应用,等腰三角形的性质,熟记等腰三角形的三线合一是解本题的关键.
    【例3】如图,在中,,作交的延长线于点,作,,且,相交于点,求证:.

    【分析】根据等边对等角可得,根据平行线的性质可得,推得,根据全等三角形的判定和性质即可证明.
    证明:∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,,
    ∴,
    在和中

    ∴,
    ∴.
    【点拨】本题考查了等边对等角,平行线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键,属于中考常考题型.
    【举一反三】
    【变式】已知:如图所示,中,,为的角平分线,求证:.(推理过程请注明理由)

    【分析】等边对等角,得到,外角的性质和角平分线的定义,得到,即可得证.
    证明:(已知),
    (等边对等角),
    是的外角,(外角的定义)
    (三角形的一个外角等于与它不相邻的两个内角的和),
    ,(等量代换)
    是的角平分线,(已知)
    (角平分线定义),
    (等量代换),
    .(内错角相等,两直线平行)
    【点拨】本题考查等腰三角形的性质,三角形的外角的性质,平行线的判定.熟练掌握相关知识点,是解题的关键.
    【考点三】等腰三角形➼➻三线合一➼➻求值✭★证明
    【例4】如图,在中,于点.
    (1)若,求的度数;
    (2)若点在边上,交的延长线于点,试说明.

    【答案】(1) ; (2)见解析
    【分析】(1)根据等腰三角形的性质可得,然后根据直角三角形两锐角互余求出的度数即可;
    (2)根据等腰三角形的性质可得,根据平行线的性质可得,等量代换可得答案.
    (1)解:∵,,,
    ∴,,
    ∴;
    (2)解:∵,,
    ∴,
    ∵,
    ∴,
    ∴.
    【点拨】本题考查了等腰三角形的性质,直角三角形两锐角互余,平行线的性质,熟练掌握等腰三角形的三线合一是解题的关键.
    【举一反三】
    【变式1】小明遇到这样一个问题:
    如图①,在中,,点在上,且,求证:.
    小明发现,除了直接用角度计算的方法外,还可以用下面的方法:如图②,作,垂足为,证明.
    请从以上两种方法中任选一种,加以证明.
    【分析】方法1:利用三角形的内角和计算角的度数即可得出结论;方法2:作,垂足为,根据同角的余角相等得出,再根据等腰三角形三线合一的性质得出.
    证明:方法1:,

    又,


    方法2:作,垂足为,



    又,,


    【点拨】本题主要考查了三角形的内角和,同角的余角相等,等腰三角形三线合一的性质,熟练掌握三角形的内角和定理,等腰三角形三线合一的性质是解题的关键.
    【考点四】等腰三角形性质与判定➼➻综合➼➻求值✭★证明
    【例5】如图:在的边的延长线上,点在边上,交于点,,.
    求证:是等腰三角形.(过作交于)

    【分析】过作交于,根据平行线的性质可得出、,结合以及可证明,根据全等三角形的性质可得出,结合可得出,进而可得出,即可得证出△ABC是等腰三角形.
    证明:如图,过作交于,
    ∵,
    ∴,
    在和中

    ∴,
    ∴,
    又∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴是等腰三角形.

    【点拨】本题考查等腰三角形的判定和性质、平行线的性质以及全等三角形的判定与性质,通过作辅助线构造全等三角形是解题的关键.
    【举一反三】
    【变式1】在中,,点分别在边上,且,.
    (1)求证:是等腰三角形;
    (2)当时,求的角度.

    【答案】(1)见解析; (2)
    【分析】(1)由得,通过证明得到,从而即可得到是等腰三角形;
    (2)由得到,由三角形内角和定理和等腰三角形的性质可得,从而得到,进而得到,最后由进行计算即可得到答案.
    (1)证明:,

    在和中,



    是等腰三角形;
    (2)解:,

    ,,,






    【点拨】本题主要考查了等腰三角形的性质、三角形全等的判定与性质、三角形内角和定理,熟练掌握等腰三角形的性质、三角形全等的判定与性质、三角形内角和定理,是解题的关键.
    【变式2】如图,中,,,,垂足是D,平分,交于点E.在外有一点F,使,.
    (1)求证:;
    (2)在上取一点M,使,连接,交于点N,连接.
    求证:①;②平分.

    【分析】(1)两次运用同角的余角相等证明,得;
    (2)①过E作于H,分别证明和是等腰直角三角形即可;②根据题意得到,然后利用角平分线的判定定理求解即可.
    (1)证明:
    ,即,
    又,
    在和中,


    (2)①如图,过点E作于H,则是等腰直角三角形,

    ∵平分
    ∴是等腰直角三角形,
    ②∵,
    ∴,

    ∵,
    ∴,

    又∵,,
    ∴平分.
    【点拨】本题考查了三角形全等、等腰直角三角形的性质和判定,角平分线的判定,证明边和角相等时,一般就证明边和角所在的三角形全等即可.
    相关试卷

    专题2.20 轴对称的最值问题(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版): 这是一份专题2.20 轴对称的最值问题(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版),共12页。

    专题2.7 角的轴对称性(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版): 这是一份专题2.7 角的轴对称性(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版),共17页。

    专题2.4 线段的轴对称性(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版): 这是一份专题2.4 线段的轴对称性(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版),共13页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题2.10 等腰三角形的轴对称性(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map