搜索
    上传资料 赚现金
    英语朗读宝

    专题2.19 等边三角形的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版)

    专题2.19 等边三角形的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版)第1页
    专题2.19 等边三角形的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版)第2页
    专题2.19 等边三角形的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版)第3页
    还剩23页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题2.19 等边三角形的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版)

    展开

    这是一份专题2.19 等边三角形的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版),共26页。
    【知识点一】等边三角形的定义
    三边都相等的三角形叫等边三角形.
    【知识点二】等边三角形的性质
    等边三角形的性质:
    等边三角形三个内角都相等,并且每一个内角都等于60°.
    【知识点三】等边三角形的判定
    (1)三条边都相等的三角形是等边三角形;
    (2)三个角都相等的三角形是等边三角形;
    (3)有一个角是60°的等腰三角形是等边三角形.
    【知识点三】含30°的直角三角形
    在直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半.
    一、单选题
    1.(2023·贵州·统考中考真题)5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为,腰长为,则底边上的高是( )

    A.B.C.D.
    2.(2023·河北·统考中考真题)在和中,.已知,则( )
    A.B.C.或D.或
    3.(2023·河北·统考中考真题)如图,直线,菱形和等边在,之间,点A,F分别在,上,点B,D,E,G在同一直线上:若,,则( )

    A.B.C.D.
    4.(2021·湖南益阳·统考中考真题)如图,为等边三角形,,则等于( )
    A.B.C.D.
    5.(2021·福建·统考中考真题)如图,点F在正五边形的内部,为等边三角形,则等于( )
    A.B.C.D.
    6.(2020·福建·统考中考真题)如图,面积为1的等边三角形中,分别是,,的中点,则的面积是( )

    A.1B.C.D.
    7.(2018·福建·中考真题)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )

    A.15°B.30°C.45°D.60°
    8.(2023·甘肃武威·统考中考真题)如图,是等边的边上的高,以点为圆心,长为半径作弧交的延长线于点,则( )

    A.B.C.D.
    9.(2022·辽宁鞍山·统考中考真题)如图,直线,等边三角形的顶点在直线上,,则的度数为( )

    A.B.C.D.
    10.(2017·湖南常德·中考真题)如图,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是线段AE上的一动点,过D作CD交BE于C,并使得∠CDE=30°,则CD长度的取值范围是 .
    二、填空题
    11.(2020·辽宁阜新·中考真题)如图,直线a,b过等边三角形顶点A和C,且,,则的度数为 .
    12.(2020·辽宁·中考真题)如图,以为边,在的同侧分别作正五边形和等边,连接,则的度数是 .

    13.(2020·湖北·中考真题)如图,D是等边三角形外一点.若,连接,则的最大值与最小值的差为 .

    14.(2020·江苏常州·中考真题)如图,在中,的垂直平分线分别交、于点E、F.若是等边三角形,则 °.

    15.(2016·广西贺州·中考真题)如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为 .
    16.(2013·广西贵港·中考真题)如图,△ABC和△FPQ均是等边三角形,点D、E、F分别是△ABC三边的中点,点P在AB边上,连接EF、QE.若AB=6,PB=1,则QE= .
    17.(2023·吉林·统考中考真题)如图,在中,.点,分别在边,上,连接,将沿折叠,点的对应点为点.若点刚好落在边上,,则的长为 .

    三、解答题
    18.(2022·四川自贡·统考中考真题)如图,△是等边三角形, 在直线上,.
    求证: .
    (2023·湖北荆州·统考中考真题)如图,是等边的中线,以为圆心,的长为半径画弧,交的延长线于,连接.
    求证:.

    20.(2021·湖北·统考中考真题)已知和都为正三角形,点B,C,D在同一直线上,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.
    (1)如图1,当时,作的中线;
    (2)如图2,当时,作的中线.
    21.(2012·贵州遵义·中考真题)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
    (1)当∠BQD=30°时,求AP的长;
    (2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.
    22.(2020·四川凉山·统考中考真题)如图,点P、Q分别是等边边AB、BC上的动点(端点除外),点P、点Q以相同的速度,同时从点A、点B出发.
    (1)如图1,连接AQ、CP求证:
    (2)如图1,当点P、Q分别在AB、BC边上运动时,AQ、CP相交于点M,的大小是否变化?若变化,请说明理由;若不变,求出它的度数
    (3)如图2,当点P、Q在AB、BC的延长线上运动时,直线AQ、CP相交于M,的大小是否变化?若变化,请说明理由;若不变,求出它的度数.
    23.(2020·山东烟台·统考中考真题)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.
    【问题解决】
    (1)如图1,若点D在边BC上,求证:CE+CF=CD;
    【类比探究】
    (2)如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.
    24.(2022·青海·统考中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.
    (1)问题发现:
    如图1,若和是顶角相等的等腰三角形,BC,DE分别是底边.求证:;
    图1
    (2)解决问题:如图2,若和均为等腰直角三角形,,点A,D,E在同一条直线上,CM为中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系并说明理由.
    图2
    参考答案
    1.B
    【分析】作于点D,根据等腰三角形的性质和三角形内角和定理可得,再根据含30度角的直角三角形的性质即可得出答案.
    【详解】解:如图,作于点D,

    中,,,



    故选B.
    【点拨】本题考查等腰三角形的性质,三角形内角和定理,含30度角的直角三角形的性质等,解题的关键是掌握30度角所对的直角边等于斜边的一半.
    2.C
    【分析】过A作于点D,过作于点,求得,分两种情况讨论,利用全等三角形的判定和性质即可求解.
    【详解】解:过A作于点D,过作于点,
    ∵,
    ∴,
    当在点D的两侧,在点的两侧时,如图,

    ∵,,
    ∴,
    ∴;
    当在点D的两侧,在点的同侧时,如图,

    ∵,,
    ∴,
    ∴,即;
    综上,的值为或.
    故选:C.
    【点拨】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.
    3.C
    【分析】如图,由平角的定义求得,由外角定理求得,,根据平行性质,得,进而求得.
    【详解】如图,∵







    故选:C.

    【点拨】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角之间的数量关系是解题的关键.
    4.C
    【分析】先根据等边三角形的性质可得,再根据平行线的性质可得,然后根据角的和差即可得.
    【详解】解:为等边三角形,






    解得,
    故选:C.
    【点拨】本题考查了等边三角形的性质、平行线的性质等知识点,熟练掌握等边三角形的性质是解题关键.
    5.C
    【分析】根据多边形内角和公式可求出∠ABC的度数,根据正五边形的性质可得AB=BC,根据等边三角形的性质可得∠ABF=∠AFB=60°,AB=BF,可得BF=BC,根据角的和差关系可得出∠FBC的度数,根据等腰三角形的性质可求出∠BFC的度数,根据角的和差关系即可得答案.
    【详解】∵是正五边形,
    ∴∠ABC==108°,AB=BC,
    ∵为等边三角形,
    ∴∠ABF=∠AFB=60°,AB=BF,
    ∴BF=BC,∠FBC=∠ABC-∠ABF=48°,
    ∴∠BFC==66°,
    ∴=∠AFB+∠BFC=126°,
    故选:C.
    【点拨】本题考查多边形内角和、等腰三角形的性质、等边三角形的性质,熟练掌握多边形内角和公式是解题关键.
    6.D
    【分析】根据题意可以判断四个小三角形是全等三角形,即可判断一个的面积是.
    【详解】∵分别是,,的中点,且△ABC是等边三角形,
    ∴△ADF≌△DBE≌△FEC≌△DFE,
    ∴△DEF的面积是.
    故选D.
    【点拨】本题考查等边三角形的性质及全等,关键在于熟练掌握等边三角形的特殊性质.
    7.A
    【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.
    【详解】解:∵等边三角形ABC中,AD⊥BC,
    ∴BD=CD,
    即:AD是BC的垂直平分线,
    ∵点E在AD上,
    ∴BE=CE,
    ∴∠EBC=∠ECB,
    ∵∠EBC=45°,
    ∴∠ECB=45°,
    ∵△ABC是等边三角形,
    ∴∠ACB=60°,
    ∴∠ACE=∠ACB-∠ECB=15°,
    故选A.
    【点拨】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.
    8.C
    【分析】由等边三角形的性质求解,再利用等腰三角形的性质可得,从而可得答案.
    【详解】解:∵是等边的边上的高,
    ∴,
    ∵,
    ∴,
    故选C
    【点拨】本题考查的是等边三角形的性质,等腰三角形的性质,熟记等边三角形与等腰三角形的性质是解本题的关键.
    9.A
    【分析】先根据等边三角形的性质得到∠A=60°,再根据三角形内角和定理计算出∠3=80°,然后根据平行线的性质得到∠1的度数.
    【详解】解:∵△ABC为等边三角形,
    ∴∠A=60°,
    ∵∠A+∠3+∠2=180°,
    ∴∠3=180°−40°−60°=80°,
    ∵,
    ∴∠1=∠3=80°.
    故选:A.
    【点拨】本题考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.也考查了平行线的性质.
    10.0<CD≤5.
    【分析】分点D与点E重合、点D与点A重合两种情况,根据等腰三角形的性质计算即可.
    【详解】解:(1)当点D与点E重合时,CD=0,此时∠CDE=30°不成立,
    (2)当点D与点A重合时,
    ∵∠A=90°,∠B=60°,
    ∴∠E=30°,
    ∴∠CDE=∠E,∠CDB=∠B,
    ∴CE=CD,CD=CB,
    ∴CD= BE=5,
    ∴0<CD≤5,
    故答案为:0<CD≤5.
    【点睛】本题考查的是等腰三角形、直角三角形的性质,掌握直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.
    11.102°
    【分析】根据题意可求出的度数,再根据两直线平行内错角相等即可得出答案.
    【详解】三角形ABC为等边三角形
    故答案为:.
    【点拨】本题考查了平行线的性质、等边三角形的性质,熟练掌握性质定理是解题的关键.
    12.66°
    【分析】由是正五边形可得AB=AE以及∠EAB的度数,由△ABF是等边三角形可得AB=AF以及∠FAB的度数,进而可得AE=AF以及∠EAF的度数,进一步即可根据等腰三角形的性质和三角形的内角和定理求出答案.
    【详解】解:∵五边形是正五边形,
    ∴AB=AE,∠EAB=108°,
    ∵△ABF是等边三角形,
    ∴AB=AF,∠FAB=60°,
    ∴AE=AF,∠EAF=108°-60°=48°,
    ∴∠EFA=.
    故答案为:66°.
    【点拨】本题考查了正多边形的内角问题、等边三角形的性质、等腰三角形的判定和性质以及三角形的内角和定理,属于常考题型,熟练掌握上述基本知识是解题的关键.
    13.12
    【分析】以CD为边向外作等边三角形CDE,连接BE,可证得△ECB≌△DCA从而得到BE=AD,再根据三角形的三边关系即可得出结论.
    【详解】解:如图1,以CD为边向外作等边三角形CDE,连接BE,
    ∵CE=CD,CB=CA,∠ECD=∠BCA=60°,
    ∴∠ECB=∠DCA,
    ∴△ECB≌△DCA(SAS),
    ∴BE=AD,
    ∵DE=CD=6,BD=8,
    ∴8-6

    相关试卷

    专题2.18 等边三角形的轴对称性(分层练习)(培优练)-2023-2024学年八年级数学上册专题讲与练(苏科版):

    这是一份专题2.18 等边三角形的轴对称性(分层练习)(培优练)-2023-2024学年八年级数学上册专题讲与练(苏科版),共36页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题2.17 等边三角形的轴对称性(分层练习)(提升练)-2023-2024学年八年级数学上册专题讲与练(苏科版):

    这是一份专题2.17 等边三角形的轴对称性(分层练习)(提升练)-2023-2024学年八年级数学上册专题讲与练(苏科版),共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题2.14 等腰三角形的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版):

    这是一份专题2.14 等腰三角形的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版),共22页。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map