|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题2.20 轴对称的最值问题(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版)
    立即下载
    加入资料篮
    专题2.20 轴对称的最值问题(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版)01
    专题2.20 轴对称的最值问题(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版)02
    专题2.20 轴对称的最值问题(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版)03
    还剩9页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题2.20 轴对称的最值问题(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版)

    展开
    这是一份专题2.20 轴对称的最值问题(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版),共12页。

    【知识点一】垂直线段最短问题;
    【知识点二】将军饮马问题;
    【知识点三】造桥选址问题.
    【考点一】垂线段最短问题➼➻➸动点所在的直线已知型
    方法技巧:一动点与一定点连成的线段中,若动点在定直线上,则垂线段最短.
    【例1】如图,在锐角三角形中,,, 的平分线交于点D,点M、N分别是和上的动点,则的最小值为( )

    A. B. C.6 D.5
    【答案】D
    【分析】如下图,先根据三角形全等的判定定理与性质可得,再根据两点之间线段最短可得的最小值为,然后根据垂线段最短可得当时,取得最小值,最后利用三角形的面积公式即可得.
    解:如图,在上取一点E,使,连接,

    是的平分线,

    在和中,




    由两点之间线段最短得:当点共线时,取最小值,最小值为,
    又由垂线段最短得:当时,取得最小值,


    解得,
    即的最小值为5,
    故选D.
    【点拨】本题考查了角平分线的定义、三角形全等的判定定理与性质、两点之间线段最短、垂线段最短等知识点,正确找出取得最小值时的位置是解题关键.
    【举一反三】
    【变式】如图,在锐角中,,,平分,、分别是 和上 的动点,则的最小值是 .

    【答案】
    【分析】根据题意画出符合题意的图形,作N关于AD的对称点R,作AC边上的高BE(E在AC上),求出BM+MN=BR,根据垂线段最短得出BM+MN≥BE,求出BE即可得出BM+MN的最小值.
    解:作N关于AD的对称点R,作AC边上的高BE(E在AC上)
    ∵平分,△ABC是锐角三角形
    ∴R必在AC上
    ∵N关于AD的对称点是R
    ∴MN=MR
    ∴BM+MN=BM+MR
    ∴BM+MN=BR≥BE(垂线段最短)
    ∵,
    ∴=18
    ∴BE=cm
    即BM+MN的最小值是cm.
    【点拨】本题考查了轴对称——最短路径问题. 解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.
    【考点二】垂线段最短问题➼➻➸动点所在的直线隐藏型
    方法技巧:一动点与一定点连成的线段中,若动点在定直线上,则垂线段最短.
    【例2】通过教材“13.4最短路径问题”的学习,我们体会到轴对称变换的作用.请你用轴对称的有关知识解决下面的问题:如图,为的中点,,,,,则的最大值是 .

    【答案】9.5
    【分析】作A关于的对称点M,B关于的对称点N,连接,,,,,利用轴对称的性质得出,,,,,,则可求出,,进而证明是等边三角形,求出,由知,当D,M,N,E共线时,最大,然后代入数值即可求出最大值.
    【详解】解:作A关于的对称点M,B关于的对称点N,连接,,,,,

    则,,,,,,
    ∵,
    ∴,
    ∴,
    ∵为的中点,,,,
    ∴,
    ∴是等边三角形,
    ∴,
    ∴,
    又,当D,M,N,E共线时,,
    ∴的最大值为9.5.
    故答案为:9.5.
    【点拨】本题考查了轴对称的性质,等边三角形的判定与性质等知识,明确题意,添加合适的辅助线,找出所求问题需要的条件是解题的关键.
    【举一反三】
    【变式】小华的作业中有一道题:“如图,AC,BD在AB的同侧,,,,点E为AB的中点.若,求CD的最大值.”哥哥看见了,提示他将和分别沿CE、DE翻折得到和,连接.最后小华求解正确,得到CD的最大值是 .
    【答案】7
    【分析】根据对称的性质得到,结合点E是AB中点,可证明是等边三角形,从而有,即可求出CD的最大值.
    解: ∵,点E为AB的中点,
    ∴,
    ∵,
    ∴,
    ∵将和分别沿CE、DE翻折得到和,
    ∴,,,,,,
    ∴,,
    ∴是等边三角形,
    ∴,

    ∴当点C,点,点,点D四点共线时,CD有最大值,即,
    【点拨】本题考查了翻折的性质,等边三角形的判定和性质,解题的关键是熟练掌握折叠的性质.
    【考点三】将军饮马问题➼➻➸两定一动型
    方法技巧:定点关于定直线对称转化为两点之间线段最短求最值.
    【例3】如图,在△ABC中,AB=6,AC=9,EF垂直平分线段BC,P是直线EF上的任意一点,则△ABP周长的最小值是 .
    【答案】15
    【分析】如图,连接PC.求出PA+PB的最小值可得结论.
    解:如图,连接PC.
    ∵EF垂直平分线段BC,
    ∴PB=PC,
    ∴PA+PB=PA+PC≥AC=9,
    ∴PA+PB的最小值为9,
    ∴△ABP的周长的最小值为6+9=15,
    故答案为:15.

    【点拨】本题考查了轴对称——最短路线问题,线段垂直平分线的性质,解决本题的关键是熟练掌握线段的垂直平分线的性质.
    【举一反三】
    【变式】如图,在中,,,的垂直平分线分别交,于点,,点是上的任意一点,则周长的最小值是 cm.

    【答案】12
    【分析】当点与重合时,的周长最小,根据垂直平分线的性质,即可求出的周长.
    解:∵DE垂直平分AC,
    ∴点C与A关于DE对称,
    ∴当点于重合时,即A、D、B三点在一条直线上时,BF+CF=AB最小,(如图),
    ∴的周长为:,
    ∵是垂直平分线,
    ∴,
    又∵,
    ∴,
    ∴,
    故答案为:12.

    【点拨】本题考查最短路径问题以及线段垂直平分线的性质:垂直平分线上的点到线段两端的距离相等,熟练掌握最短路径的求解方法以及垂直平分线的性质是解题的关键.
    【考点三】将军饮马问题➼➻➸一定两动型
    方法技巧:定点关于定直线对称转化为两点之间线段最短求最值.
    【例4】如图,是内一定点,点,分别在边,上运动,若,,则的周长的最小值为 .
    【答案】3
    【分析】如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等边三角形,据此即可求解.
    解:如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.

    ∵点P关于OA的对称点为C,
    ∴PM=CM,OP=OC,∠COA=∠POA;
    ∵点P关于OB的对称点为D,
    ∴PN=DN,OP=OD,∠DOB=∠POB,
    ∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
    ∴△COD是等边三角形,
    ∴CD=OC=OD=3.
    ∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=3.
    【点拨】此题主要考查轴对称--最短路线问题,综合运用了等边三角形的知识.正确作出图形,理解△PMN周长最小的条件是解题的关键.
    【举一反三】
    【变式】如图,点P是内任意一点,,点M和点N分别是射线和射线上的动点,,则周长的最小值是 .

    【答案】
    【分析】分别作点P关于的对称点C、D,连接,分别交于点M、N,连接,当点M、N在上时,的周长最小.
    解:分别作点P关于的对称点C、D,连接,分别交于点M、N,连接.

    ∵点P关于的对称点为C,关于的对称点为D,
    ∴;
    ∵点P关于的对称点为D,
    ∴,
    ∴,,
    ∴是等边三角形,
    ∴.
    ∴的周长的最小值.
    故答案为:.
    【点拨】本题主要考查最短路径问题和等边三角形的判定. 作点P关于OA、OB的对称点C、D是解题的关键所在.
    【知识点四】造桥选址问题.
    方法技巧:将分散的线段平移集中,再求最值.
    【例4】在长方形ABCD中,AB=4,BC=8,点P、Q为BC边上的两个动点(点P位于点Q的左侧,P、Q均不与顶点重合),PQ=2
    (1)如图①,若点E为CD边上的中点,当Q移动到BC边上的中点时,求证:AP=QE;
    (2)如图②,若点E为CD边上的中点,在PQ的移动过程中,若四边形APQE的周长最小时,求BP的长;
    (3)如图③,若M、N分别为AD边和CD边上的两个动点(M、N均不与顶点重合),当BP=3,且四边形PQNM的周长最小时,求此时四边形PQNM的面积.
    【答案】(1)见解析; (2) 4; (3) 4
    【分析】(1)由“SAS”可证△ABP≌△QCE,可得AP=QE;
    (2)要使四边形APQE的周长最小,由于AE与PQ都是定值,只需AP+EQ的值最小即可.为此,先在BC边上确定点P、Q的位置,可在AD上截取线段AF=DE=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,则此时AP+EQ=EG最小,然后过G点作BC的平行线交DC的延长线于H点,那么先证明∠GEH=45°,再由CQ=EC即可求出BP的长度;
    (3)要使四边形PQNM的周长最小,由于PQ是定值,只需PM+MN+QN的值最小即可,作点P关于AD的对称点F,作点Q关于CD的对称点H,连接FH,交AD于M,交CD于N,连接PM,QN,此时四边形PQNM的周长最小,由面积和差关系可求解.
    (1)解:证明:∵四边形ABCD是矩形,
    ∴CD=AB=4,BC=AD=8,
    ∵点E是CD的中点,点Q是BC的中点,
    ∴BQ=CQ=4,CE=2,
    ∴AB=CQ,
    ∵PQ=2,
    ∴BP=2,
    ∴BP=CE,
    又∵∠B=∠C=90°,
    ∴△ABP≌△QCE(SAS),
    ∴AP=QE;
    (2)如图②,在AD上截取线段AF=PQ=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,过G点作BC的平行线交DC的延长线于H点.

    ∵GH=DF=6,EH=2+4=6,∠H=90°,
    ∴∠GEH=45°,
    ∴∠CEQ=45°,
    设BP=x,则CQ=BC-BP-PQ=8-x-2=6-x,
    在△CQE中,
    ∵∠QCE=90°,∠CEQ=45°,
    ∴CQ=EC,
    ∴6-x=2,
    解得x=4,
    ∴BP=4;
    (3)如图③,作点P关于AD的对称点F,作点Q关于CD的对称点H,连接FH,交AD于M,交CD于N,连接PM,QN,此时四边形PQNM的周长最小,连接FP交AD于T,

    ∴PT=FT=4,QC=BC-BP-PQ=8-3-2=3=CH,
    ∴PF=8,PH=8,
    ∴PF=PH,
    又∵∠FPH=90°,
    ∴∠F=∠H=45°,
    ∵PF⊥AD,CD⊥QH,
    ∴∠F=∠TMF=45°,∠H=∠CNH=45°,
    ∴FT=TM=4,CN=CH=3,
    ∴四边形PQNM的面积=×PF×PH-×PF×TM-×QH×CN=×8×8-×8×4-×6×3=7.
    【点拨】本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,轴对称求最短距离,直角三角形的性质;通过构造平行四边形和轴对称找到点P和点Q位置是解题的关键.
    相关试卷

    专题2.24 轴对称的最值问题(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版): 这是一份专题2.24 轴对称的最值问题(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版),共30页。

    专题2.7 角的轴对称性(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版): 这是一份专题2.7 角的轴对称性(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版),共17页。

    专题2.4 线段的轴对称性(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版): 这是一份专题2.4 线段的轴对称性(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版),共13页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题2.20 轴对称的最值问题(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map