开学活动
搜索
    上传资料 赚现金

    2023年初中数学8年级上册同步压轴题 专题02 全等三角形中的六种模型梳理(学生版+教师解析)

    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      2023年初中数学8年级上册同步压轴题 专题02 全等三角形中的六种模型梳理(教师版含解析) .docx
    • 学生
      2023年初中数学8年级上册同步压轴题 专题02 全等三角形中的六种模型梳理(学生版) .docx
    2023年初中数学8年级上册同步压轴题 专题02 全等三角形中的六种模型梳理(教师版含解析) 第1页
    2023年初中数学8年级上册同步压轴题 专题02 全等三角形中的六种模型梳理(教师版含解析) 第2页
    2023年初中数学8年级上册同步压轴题 专题02 全等三角形中的六种模型梳理(教师版含解析) 第3页
    2023年初中数学8年级上册同步压轴题 专题02 全等三角形中的六种模型梳理(学生版)  第1页
    2023年初中数学8年级上册同步压轴题 专题02 全等三角形中的六种模型梳理(学生版)  第2页
    2023年初中数学8年级上册同步压轴题 专题02 全等三角形中的六种模型梳理(学生版)  第3页
    还剩39页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年初中数学8年级上册同步压轴题 专题02 全等三角形中的六种模型梳理(学生版+教师解析)

    展开

    这是一份2023年初中数学8年级上册同步压轴题 专题02 全等三角形中的六种模型梳理(学生版+教师解析),文件包含2023年初中数学8年级上册同步压轴题专题02全等三角形中的六种模型梳理教师版含解析docx、2023年初中数学8年级上册同步压轴题专题02全等三角形中的六种模型梳理学生版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
    类型一、倍长中线模型
    中线倍长法:将中点处的线段延长一倍。
    目的: = 1 \* GB3 ①构造出一组全等三角形; = 2 \* GB3 ②构造出一组平行线。将分散的条件集中到一个三角形中去。
    例1.某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.
    【探究与发现】
    如图1,延长△ABC的边BC到D,使DC=BC,过D作DE∥AB交AC延长线于点E,求证:△ABC≌△EDC.
    【理解与应用】
    如图2,已知在△ABC中,点E在边BC上且∠CAE=∠B,点E是CD的中点,若AD平分∠BAE.
    (1)求证:AC=BD;
    (2)若BD=3,AD=5,AE=x,求x的取值范围.
    【变式训练1】如图1,在中,是边的中线,交延长线于点,.

    (1)求证;
    (2)如图2,平分交于点,交于点,若,,求的值.
    【变式训练2】(1)如图1,已知中,AD是中线,求证:;
    (2)如图2,在中,D,E是BC的三等分点,求证:;
    (3)如图3,在中,D,E在边BC上,且.求证:.
    【变式训练3】在中,点为边中点,直线绕顶点旋转,直线于点.直线于点,连接,.
    (1)如图1,若点,在直线的异侧,延长交于点.求证:.
    (2)若直线绕点旋转到图2的位置时,点,在直线的同侧,其它条件不变,此时,,,求的长度.
    (3)若过点作直线于点.试探究线段、和的关系.
    类型二、截长补短模型
    截长补短法使用范围:线段和差的证明(往往需证2次全等)
    例.在等边三角形ABC的两边AB、AC所在直线上分别有两点M、N,P为△ABC外一点,且∠MPN=60°,∠BPC=120°,BP=CP.探究:当点M、N分别在直线AB、AC上移动时,BM,NC,MN之间的数量关系.
    (1)如图①,当点M、N在边AB、AC上,且PM=PN时,试说明MN=BM+CN.
    (2)如图②,当点M、N在边AB、AC上,且PM≠PN时,MN=BM+CN还成立吗?
    答: .(请在空格内填“一定成立”“不一定成立”或“一定不成立”).
    (3)如图③,当点M、N分别在边AB、CA的延长线上时,请直接写出BM,NC,MN之间的数量关系.
    【变式训练1】如图,在四边形中,,点E、F分别在直线、上,且.
    (1)当点E、F分别在边、上时(如图1),请说明的理由.
    (2)当点E、F分别在边、延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出、、之间的数量关系,并说明理由.
    【变式训练2】(1)阅读理解:问题:如图1,在四边形中,对角线平分,.求证:.
    思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.
    方法1:在上截取,连接,得到全等三角形,进而解决问题;
    方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.
    结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.
    (2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;
    (3)问题拓展:如图3,在四边形中,,,过点D作,垂足为点E,请直接写出线段、、之间的数量关系.
    【变式训练3】在中,BE,CD为的角平分线,BE,CD交于点F.
    (1)求证:;
    (2)已知.
    ①如图1,若,,求CE的长;
    ②如图2,若,求的大小.
    类型三、做平行线证明全等
    例1.如图所示:是等边三角形,、分别是及延长线上的一点,且,连接交于点.
    求让:
    【变式训练1】 P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.
    (1)证明:PD=DQ.
    (2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.
    【变式训练2】已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M.请探究:
    (1)如图(1),当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论.
    (2)如图(2),当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;
    类型四、旋转模型
    例.如图1,,,,、相交于点,连接.
    (1)求证:,并用含的式子表示的度数;
    (2)当时,取,的中点分别为点、,连接,,,如图2,判断的形状,并加以证明.
    【变式训练1】四边形是由等边和顶角为的等腰排成,将一个角顶点放在处,将角绕点旋转,该交两边分别交直线、于、,交直线于、两点.
    (1)当、都在线段上时(如图1),请证明:;
    (2)当点在边的延长线上时(如图2),请你写出线段,和之间的数量关系,并证明你的结论;
    (3)在(1)的条件下,若,,请直接写出的长为 .
    【变式训练2】(1)问题发现:
    如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.则:
    ①∠AEB的度数为 °;
    ②线段AD、BE之间的数量关系是 .
    (2)拓展研究:
    如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点 A、D、E在同一直线上,若AD=a,AE=b,AB=c,求a、b、c之间的数量关系.
    (3)探究发现:
    图1中的△ACB和△DCE,在△DCE旋转过程中,当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.
    【变式训练3】如图1,在中,,,点,分别在边,上,,连接,点,,分别为,,的中点.
    (1)观察猜想:图1中,线段与的数量关系是______,位置关系是______.
    (2)探究证明:把绕点逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由;
    (3)拓展延伸:把绕点在平面内自由旋转,若,,请直接写出面积的最大值.
    类型五、手拉手模型
    例.在等边中,点D在AB上,点E在BC上,将线段DE绕点D逆时针旋转60°得到线段DF,连接CF.
    (1)如图(1),点D是AB的中点,点E与点C重合,连接AF.若,求AF的长;
    (2)如图(2),点G在AC上且,求证:;
    (3)如图(3),,,连接AF.过点F作AF的垂线交AC于点P,连接BP、DP.将沿着BP翻折得到,连接QC.当的周长最小时,直接写出的面积.
    【变式训练1】△ACB和△DCE是共顶点C的两个大小不一样的等边三角形.
    (1)问题发现:
    如图1,若点A,D,E在同一直线上,连接AE,BE.
    ①求证:△ACD≌△BCE;②求∠AEB的度数.
    (2)类比探究:如图2,点B、D、E在同一直线上,连接AE,AD,BE,CM为△DCE中DE边上的高,请求∠ADB的度数及线段DB,AD,DM之间的数量关系,并说明理由.
    (3)拓展延伸:如图3,若设AD(或其延长线)与BE的所夹锐角为α,则你认为α为多少度,并证明.
    【变式训练2】(1)如图1,锐角△ABC中,分别以AB、AC为边向外作等腰直角△ABE和等腰直角△ACD,使AE=AB,AD=AC,∠BAE=∠CAD=90°,连接BD,CE,试猜想BD与CE的大小关系,不需要证明.
    【深入探究】(2)如图2,四边形ABCD中,AB=5,BC=2,∠ABC=∠ACD=∠ADC=45°,求BD2的值;甲同学受到第一问的启发构造了如图所示的一个和△ABD全等的三角形,将BD进行转化再计算,请你准确的叙述辅助线的作法,再计算;
    【变式思考】(3)如图3,四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,AD=6,BD=10,则CD= .
    【变式训练3】(1)问题发现:
    如图1,和均为等腰直角三角形,,连接,,点、、在同一条直线上,则的度数为__________,线段、之间的数量关系__________;
    (2)拓展探究:
    如图2,和均为等腰直角三角形,,连接,,点、、不在一条直线上,请判断线段、之间的数量关系和位置关系,并说明理由.
    (3)解决问题:
    如图3,和均为等腰三角形,,则直线和的夹角为__________.(请用含的式子表示)
    类型六、一线三角模型
    例.在中,,,直线MN经过点C且于D,于E.
    (1)当直线MN绕点C旋转到图1的位置时,求证:
    ①≌;
    ②;
    (2)当直线MN烧点C旋转到图2的位置时,求证:;
    (3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
    【变式训练1】【问题解决】
    (1)已知△ABC中,AB=AC,D,A,E三点都在直线l上,且有∠BDA=∠AEC=∠BAC.如图①,当∠BAC=90°时,线段DE,BD,CE的数量关系为:______________;
    【类比探究】
    (2)如图②,在(1)的条件下,当0°

    相关试卷

    2023年初中数学8年级上册同步压轴题 第12章 全等三角形压轴题考点训练(学生版+教师解析):

    这是一份2023年初中数学8年级上册同步压轴题 第12章 全等三角形压轴题考点训练(学生版+教师解析),文件包含2023年初中数学8年级上册同步压轴题第12章全等三角形压轴题考点训练教师版含解析docx、2023年初中数学8年级上册同步压轴题第12章全等三角形压轴题考点训练学生版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    2023年初中数学8年级上册同步压轴题 专题07 因式分解的六种方法大全(学生版+教师解析):

    这是一份2023年初中数学8年级上册同步压轴题 专题07 因式分解的六种方法大全(学生版+教师解析),文件包含2023年初中数学8年级上册同步压轴题专题07因式分解的六种方法大全教师版含解析docx、2023年初中数学8年级上册同步压轴题专题07因式分解的六种方法大全学生版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。

    初中数学3.1.1 一元一次方程一课一练:

    这是一份初中数学3.1.1 一元一次方程一课一练,文件包含2023年初中数学7年级上册同步压轴题专题07一元一次方程实际应用的六种考法教师版含解析docx、2023年初中数学7年级上册同步压轴题专题07一元一次方程实际应用的六种考法学生版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。

    英语朗读宝
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map