苏科版八年级数学上册同步精品讲义 第13讲 勾股定理的逆定理(学生版+教师版)
展开知识点01 勾股定理的逆定理
如果三角形的三条边长,满足,那么这个三角形是直角三角形.
【微点拨】
(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.
(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.
【即学即练1】某工程的测量人员在规划一块如图所示的三角形土地时,在BC上有一处古建筑D,使得BC的长不能直接测出,工作人员测得AB=130米,AD=120米,BD=50米,在测出AC=150米后,测量工具坏了,使得DC的长无法测出,请你想办法求出BC的长度为( )
A.90米B.120米C.140米D.150米
知识点02 如何判断一个三角形是否是直角三角形
(1)首先确定最大边(如).
(2)验证与是否具有相等关系.若,则△ABC是∠C=90°的直角三角形;若,则△ABC不是直角三角形.
【微点拨】
当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.
【即学即练2】在中,∠A,∠B,∠C的对边分别是a,b,c,下列条件中,不能判定是直角三角形的是( )
A.B.
C.,,D.,,
知识点03 勾股数
满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.
熟悉下列勾股数,对解题会很有帮助:
①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……
如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.
【微点拨】
(1)(是自然数)是直角三角形的三条边长;
(2)(n≥1,是自然数)是直角三角形的三条边长;
(3) (是自然数)是直角三角形的三条边长;
【即学即练3】下列各组数中,是勾股数的是( )
A.1,,3B.0.3,0.4,0.6C.9,12,15D.5,6,7
考法01 判断三边能否构成直角三角形
【典例1】1.如图,在△ABC中,AC=3 cm,BC=4 cm,AB=5 cm,D,E,F分别是AB,BC,CA的中点,则△DEF的面积等于( )
A.1B.1.5C.2D.3
考法02 利用勾股定理的逆定理求解
【典例2】下列条件中,不能判断一个三角形是直角三角形的是( )
A.三个角的比是
B.三条边,,满足关系
C.三条边的比是
D.三边长分别为1,2,
题组A 基础过关练
1.以线段a,b,c为三边的三角形是直角三角形的是( )
A.a=5,b=4,c=3B.a=1,b=2,c=3
C.a=5,b=6,c=7D.a=2,b=2,c=3
2.下列给出的三条线段首尾相接,组成的三角形是直角三角形的是( )
A.3cm,4cm,4cmB.5cm,7cm,9cmC.6cm,8cm,10cmD.8cm,10cm,12cm
3.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形,那么这四个三角形中,不是直角三角形的是( )
A.B.C.D.
4.若△ABC的三边为a、b、c满足a:b:c=1:1:,则△ABC的形状为 ________________.
5.如图,在4×4的正方形网格中,每个小方格的顶点叫做格点,以格点为顶点画△ABC,使,,.标出顶点位置,并判断△ABC形状为 三角形.
6.已知a,b,c为三角形的三边,且满足,这个三角形是________三角形.
7.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,则这块地的面积为多少?
题组B 能力提升练
1.下列长度的三条线段,能组成直角三角形的是( )
A.,,B.,,C.3,4,5D.6,8,11
2.满足下列条件的三边长为a、b、c的,不是直角三角形的是( )
A.B.
C.D.
3.已知的三边分别为a,b,c,下列条件不能判断是直角三角形的是( )
A.B.,,
C.D.
4.如图,在正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别画三角形,则图中直角三角形是( )
A.①B.②C.③D.④
5.在中,,,,则等于90°的角是( )
A.B.C.D.不存在
6.如图,在四边形ABCD中,,,,.则的度数为________.
7.如图,在正方形网格中,点A,B,C,D,E是格点,则∠ABD+∠CBE的度数为_____________.
8.如图是一个零件的示意图,测量,,,,若,则_________.
9.如图,在四边形ABCD中,,,,,BC⊥DC于点C.求四边形ABCD的面积.
10.如图,中,点D是上的一点,,,,.
(1)判断与的位置关系,并说明理由;
(2)求的面积.
题组C 培优拔尖练
1.已知△ABC的三边分别是a、b、c,下列条件中不能判断△ABC为直角三角形的是( )
A.B.∠A+∠B=∠C
C.a=1,b=3,D.
2.关于有下列条件:①;②;③;④;⑤.其中能确定是直角三角形的有( )
A.2个B.3个C.4个D.5个
3.甲、乙两艘客轮同时离开港口,航行的速度都是,甲客轮沿着北偏东的方向航行,后到达小岛,乙客轮到达小岛.若,两岛的直线距离为,则乙客轮离开港口时航行的方向是( )
A.北偏西B.南偏西
C.南偏东或北偏西D.南偏东或北偏西
4.△ABC的边为a、b、c,下列条件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③;④;; (m>1);⑤若c的中线为m,且,其中能判定△ABC为直角三角形的有( )
A.2个B.3个C.4个D.5个
5.如图,D为△ABC边BC上的一点,AB=20,AC=13,AD=12,DC=5,则S△ABC=______.
6.如图所示,在四边形ABCD中,AB=5,BC=3,DE⊥AC于E,DE=3,S△DAC=6,则∠ACB的度数等于 _____.
7.如图,在中,,,,把折叠,使AB落在直线AC上,则重叠部分(阴影部分)的面积是______.
8.如图,在△ABC中,点D是BC边的中点,,.
(1)求证:∠A=90°;
(2)若AC=6,BD=5,求AE的长度.
9.自2020年以来,安宁市建起了多个“口袋公园”,它们既美化了城市空间,又拓展了市民的公共活动场所,还体现着城市风貌和文化.如图,在某小区旁有一块四边形空地,其中,,,,.
(1)如图,连接AC,试求AC的长;
(2)安宁市委市政府计划将其打造为“口袋公园”,经测算,每平方米的费用为2000元,请你计算将这块地打造成“口袋公园”需要多少钱?
10.如图①,是四边形ABCD的一个外角,,,点F在CD的延长线上,,,垂足为G.
(1)求证:
①DC平分;
②.
(2)如图②,若,,.
①求的度数;
②直接写出四边形ABCF的面积.
课程标准
课标解读
体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理
探究勾股定理的逆定理的证明方法
理解原命题、逆命题、逆定理的概念及关系
掌握勾股定理的逆定理及简单应用
掌握勾股定理的逆定理的证明方法
理解勾股定理的逆定理,并能与勾股定理相区别;
能运用勾股定理的逆定理判断一个三角形是否是直角三角形
苏科版八年级数学下册同步精品讲义 第13讲 分式(学生版+教师版): 这是一份苏科版八年级数学下册同步精品讲义 第13讲 分式(学生版+教师版),文件包含苏科版八年级数学下册同步精品讲义第13讲分式教师版docx、苏科版八年级数学下册同步精品讲义第13讲分式学生版docx等2份学案配套教学资源,其中学案共21页, 欢迎下载使用。
苏科版八年级数学下册同步精品讲义 第13讲 分式(学生版): 这是一份苏科版八年级数学下册同步精品讲义 第13讲 分式(学生版),文件包含苏科版八年级数学下册同步精品讲义第13讲分式教师版docx、苏科版八年级数学下册同步精品讲义第13讲分式学生版docx等2份学案配套教学资源,其中学案共21页, 欢迎下载使用。
初中数学苏科版八年级上册1.1 全等图形学案: 这是一份初中数学苏科版八年级上册1.1 全等图形学案,文件包含苏科版八年级数学上册同步精品讲义第01讲全等图形教师版docx、苏科版八年级数学上册同步精品讲义第01讲全等图形学生版docx等2份学案配套教学资源,其中学案共20页, 欢迎下载使用。