2023-2024学年广东省广州市天河区高三上学期中质量检测数学试题(含解析)
展开
这是一份2023-2024学年广东省广州市天河区高三上学期中质量检测数学试题(含解析),共21页。试卷主要包含了选择题.,选择题,填空题,解答题.等内容,欢迎下载使用。
一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的).
1.已知集合,,则( )
A.B.C.RD.
2.使“”成立的一个充分不必要条件是( )
A.B.
C.D.
3.已知圆锥的侧面积(单位:)为,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:)是( )
A.B.
C.D.
4.若为等差数列,是其前项的和,且为等比数列,,则的值为( )
A.B.C.D.
5.已知双曲线的右焦点为,以为圆心,为半径的圆与双曲线的一条渐近线的两个交点为.若,则该双曲线的离心率为( )
A.B.C.D.
6.函数在上单调递增,则的最大值为( )
A.B.C.D.
7.设函数是奇函数的导函数,,当时,,则不等式的解集为( )
A.B.
C.D.
8.中,为上一点且满足,若为上一点,且满足为正实数,则下列结论正确的是( )
A.的最小值为B.的最大值为1
C.的最小值为4D.的最大值为16
二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)
9.已知i为虚数单位,下列说法正确的是( )
A.若复数,则
B.若复数z满足,则复平面内z对应的点Z在一条直线上
C.若是纯虚数,则实数
D.复数的虚部为
10.已知过点A(a,0)作曲线的切线有且仅有两条,则实数a的值可以是( )
A.-2B.4C.0D.6
11.已知是抛物线的焦点,是上的两点,为原点,则( )
A.若垂直的准线于点,且,则四边形的周长为
B.若,则的面积为
C.若直线过点,则的最小值为
D.若,则直线恒过定点
12.如图,矩形中,为边的中点,沿将折起,点折至处平面分别在线段和侧面上运动,且,若分别为线段的中点,则在折起过程中,下列说法正确的是( )
A.面积的最大值为
B.存在某个位置,使得
C.三棱锥体积最大时,三棱锥的外接球的表面积为
D.三棱锥体积最大时,点到平面的距离的最小值为.
三、填空题(本大题共4个小题,每小题5分,共20分)
13.已知向量,则向量在向量上的投影向量的坐标为 .
14.已知函数.若,则 .
15.已知函数,若,则实数的取值范围为 .
16.如图,矩形中, 分别为线段上的动点,且满足.点关于原点的对称点为,直线与交于点,则点到直线的最小距离为 .
四、解答题(本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤).
17.已知等比数列的第二、三、四项分别是等差数列的第二、五、十四项,且等差数列的首项,公差.
(1)求数列与的通项公式;
(2)设数列对任意均有成立,求的值.
18.在锐角中,内角的对边分别为,已知.
(1)求;
(2)若,求的取值范围.
19.如图,在三棱柱中,为等边三角形,四边形是边长为的正方形,为中点,且.
(1)求证:平面;
(2)若点在线段上,且直线与平面所成角的正弦值为,求点到平面的距离.
20.第19届杭州亚运会-电子竞技作为正式体育竞赛项目备受关注.已知某项赛事的季后赛后半段有四支战队参加,采取“双败淘汰赛制”,对阵表如图,赛程如下:
第一轮:四支队伍分别两两对阵(即比赛1和2),两支获胜队伍进入胜者组,两支失败队伍落入败者组.
第二轮:胜者组两支队伍对阵(即比赛3),获胜队伍成为胜者组第一名,失败队伍落入败者组;第一轮落入败者组两支队伍对阵(即比赛4),失败队伍(已两败)被淘汰(获得殿军),获胜队伍留在败者组.
第三轮:败者组两支队伍对阵(即比赛5),失败队伍被淘汰(获得季军);获胜队伍成为败者组第一名.
第四轮:败者组第一名和胜者组第一名决赛(即比赛6),争夺冠军.假设每场比赛双方获胜的概率均为0.5,每场比赛之间相互独立.问:
(1)若第一轮队伍和队伍对阵,则他们仍能在决赛中对阵的概率是多少?
(2)已知队伍在上述季后赛后半段所参加的所有比赛中,败了两场,求在该条件下队伍获得亚军的概率.
21.设椭圆的离心率,椭圆上的点到左焦点的距离的最大值为3.
(1)求椭圆的方程;
(2)求椭圆的外切矩形的面积的取值范围.
22.已知函数.
(1)当时,讨论函数零点的个数;
(2)当时,恒成立,求的取值范围.
1.A
【分析】求出函数的定义域和值域,可分别化简集合,,再利用交集的定义求解即可.
【详解】依题意:,,
所以.
故选:A.
2.D
【分析】根据充分不必要条件的意思和不等式的性质可得答案.
【详解】只有当同号时才有,故错,
,故B错,
推不出显然错误,
,而反之不成立,故D满足题意,
故选:D.
3.B
【分析】利用扇形的面积公式,底面圆周长等于扇形弧长,即得解.
【详解】设圆锥底面半径为,母线长为,则
,解得.
故选:B
4.D
【分析】根据等差数列以及等比数列的性质分别求得的值,结合三角函数诱导公式化简求值,即得答案.
【详解】因为为等差数列,故,
所以,
又因为为等比数列,,所以,
当时,;
当时,;
所以,
故选:D.
5.D
【分析】结合圆的垂径定理及点到直线距离公式求出焦点到准线的距离,求出离心率即可.
【详解】因为,,所以三角形为正三角形,
所以到直线的距离为,所以,
因为,所以,所以,所以.
故选:D
6.B
【分析】利用诱导公式化简,结合余弦函数单调性和的范围即可构造不等式求得结果.
【详解】由题意得:,当时,,
在上单调递增,,又,解得:,
的最大值为.
故选:B.
7.B
【分析】观察,可考虑构造函数,求得的奇偶性,再由时,的单调性确定整个增减性,由与的正负反推正负即可求解.
【详解】设,则,∵当时,,
∴当时,,即在上单调递减.
由于是奇函数,所以,是偶函数,
所以在上单调递增.
又,
当或时,;
当或时,,
所以当或时,.
即不等式的解集为.
故选:B.
8.C
【分析】利用基本不等式可求得的最大值为,判断A、B;将化为,结合基本不等式可求得其最小值,判断C;,结合可判断D.
【详解】为正实数,,
,而共线,
,
当且仅当时,结合,即时取等号,A,B错误;
,
当且仅当,即,即时取等号,
即的最小值为4,C正确;
又,
由于为正实数,,则,
则,时取最大值,
当趋近于0时,可无限趋近于0,
故,故无最大值,D错误,
故选:C.
9.AB
【分析】根据复数的运算直接计算可知A;由复数的模的公式化简可判断B;根据纯虚数的概念列方程直接求解可知C;由虚部概念可判断D.
【详解】对于A:因为,所以,故A正确;
对于B:设,代入,得,整理得,即点Z在直线上,故B正确;
对于C:是纯虚数,则,即,故C错误;
对于D:复数的虚部为,故D错误.
故选:AB.
10.AD
【分析】设出切点,写出切线方程,将点代入,化简后方程有两根,即可得到的取值范围.
【详解】设切点为,则,所以切线方程为:,切线过点A(a,0),代入得:,即方程有两个解,则有或.
故选:AD.
11.BCD
【分析】对于A,由条件可得垂直于轴,然后可得四边形的周长,对于B,由条件可得点的横纵坐标,即可得的面积,对于C,设直线,然后联立抛物线的方程消元,然后得到,然后结合基本不等式可得的最小值,对于D,设直线,然后联立抛物线方程消元,然后由可求出的值.
【详解】
对于选项,由题意知,且垂直于轴,根据抛物线的定义可知.
设与轴的交点为,易知,
故,
所以四边形的周长为,选项错误;
对于选项,由题意得,解得,所以,
从而,选项正确;
对于选项,若直线过点,设直线,
联立直线与抛物线方程得,易得,
则,
所以,
当且仅当时,等号成立,选项C正确;
对于选项D,设直线,联立直线与抛物线方程得,
则,即,,所以,
由可得,
即,解得,
故直线的方程为,即直线恒过定点,选项D正确.
故选:BCD.
12.ACD
【分析】A选项,利用三角形面积公式,,当时,最大,且最大值为,故A正确;B选项,取的中点,易证,易判断B错误;C选项,三棱锥体积最大时,平面,,找到球心求出半径得解;D选项,由,得,所以点在以为球心,1为半径的球面上,求出点到平面的距离得解.
【详解】对于A,由,,则,
所以当时,最大,且最大值为,故A正确;
对于B,取的中点,连接,显然,且,
又,所以四边形为平行四边形,
所以,又,且,为的中点,
则与不垂直,
所以与不垂直,故B错;
对于C,易知三棱锥体积最大时,平面平面,交线为,
作,因为平面,则平面,
取中点,连接,,,则,
由勾股定理可得,
又,故点为三棱锥的外接球的球心,
所以其外接球的半径为,表面积为,故C正确;
对于D,由选项C可知,,
点在以为球心,1为半径的球面上,设点到平面的距离为,
因为,所以,
易知,,,
,,,
所以点到平面的距离的最小值为,选项D正确.
故选:ACD.
13.
【分析】根据投影向量的求法求得正确答案.
【详解】由,得,又,
所以向量在向量上的投影向量的坐标为.
故
14.##
【分析】利用二倍角公式、辅助角公式化简函数,再利用已知及和角的余弦公式求解即可.
【详解】依题意,,
由,得,又,即,则,
所以.
故
15..
【分析】由题意得及1,从而将问题转化为求的取值范围,由此利用导数研究其单调性即 可得解.
【详解】因为与在其定义域单调递增,
所以在各自定义域内不可能有两个点使得,
又因为,所以由题意得,
故由得,则所以,
令,则,
所以在上单调递增,则,
故,即.
故答案为.
16.
【分析】由已知条件求出点轨迹方程,设点求点到直线的最小距离,或利用平行于直线的切线求点到直线的最小距离.
【详解】如图可知.
当时,则交点为;当时,则交点为.
当时,则,
于是可得,,
联立上式可得点的轨迹方程为.
又点满足方程,故点的轨迹方程为.
法一:设,则,
当时,距离最小,最小为.
法二:点的轨迹方程为:,与无公共点.
设直线平行于直线,则直线的方程可以写为,
由方程组消去,得.
令其根的判别式,得.
由图知,当时,直线与的公共点到直线的距离最小,
即两平行直线和之间的距离,
所以最小距离为.
故
17.(1).
(2)
【分析】(1)由题意得,再利用等比数列和等差数列的性质列方程可求出,从而可求出公比,进而可求得数列与的通项公式;
(2)由,得,两式相减可求得,再验证,然后利用等比数列的求和公式可求得结果.
【详解】(1)设等比数列的公比为,
由题意,,
,解得,或(舍去),
,
.
(2)由题意,,①
,②
②-①得,
当时,不满足上式,所以,
.
18.(1)
(2)
【分析】(1)利用正弦定理化边为角,再结合两角和的正弦公式及三角形内角和定理化简即可得解;
(2)先利用正弦定理求出,再根据三角恒等变换化简,结合三角函数的性质即可得解.
【详解】(1)根据题意,由正弦定理得
,
又在锐角中,有,所以,
所以,所以;
(2)结合(1)可得,
由,则根据正弦定理有,
得,
根据余弦定理有,得,
所以
,
又为锐角三角形,则有,得,
所以,所以,
故.
19.(1)证明见解析
(2)
【分析】(1)由勾股定理证明,再由,可证平面,即得,由,可证平面;(2)由题意证明得两两垂直,建立空间直角坐标系,写出对应点的坐标与向量的坐标,求解平面的法向量,设,再由向量夹角的公式代入计算得,根据点到平面的距离公式代入计算,可得答案.
【详解】(1)证明:由题知,
,
又,所以,
又,平面,
所以平面,又平面,所以,
在正中,为中点,于是,
又,平面,所以平面
(2)取中点为中点为,则,
由(1)知,平面,且平面,
所以,又,
所以,平面
所以平面,于是两两垂直.
如图,以为坐标原点,的方向为轴、轴、轴的正方向,
建立空间直角坐标系,则,
,所以,
.
设平面的法向量为,
则,即,
令,则,于是.
设,
则.
由于直线与平面所成角的正弦值为,
,
即,整理得
,由于,所以
于是.
设点到平面的距离为,则,
所以点到平面的距离为.
方法点睛:对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.
20.(1)
(2)
【分析】(1)根据乘法公式求概率即可;
(2)根据条件概率公式求概率即可.
【详解】(1)由题意可知,第一轮队伍和队伍对阵,则获胜队伍需要赢得比赛3的胜利,失败队伍需要赢得比赛4和比赛5的胜利,他们才能在决赛中对阵,
所以所求的概率为.
(2)设表示队伍在比赛中胜利,表示队伍在比赛中失败,
设事件:队伍获得亚军,事件队伍所参加的所有比赛中败了两场,
则事件包括,且这五种情况彼此互斥,
进而
,
事件包括,且这两种情况互斥,
进而,
所以所求事件的概率为.
21.(1)(2)
【分析】(1)根据题意求出,进而可求出结果;
(2)当矩形的一组对边斜率不存在时,可求出矩形的面积;当矩形四边斜率都存在时,不防设,所在直线斜率为,则,斜率为,设出直线的方程为,联立直线与椭圆方程,结合韦达定理以及弦长公式等,即可求解.
【详解】解:(1)由题设条件可得,,解得,
∴,所以椭圆的方程为
(2)当矩形的一组对边斜率不存在时,得矩形的面积
当矩形四边斜率都存在时,不防设,所在直线斜率为,则,斜率为,
设直线的方程为,与椭圆联立可得
,
由,得
显然直线的直线方程为,直线,间的距离
,
同理可求得,间的距离为
所以四边形面积为
(等号当且仅当时成立)
又,
故由以上可得外切矩形面积的取值范围是
本题主要考查椭圆方程以及直线与椭圆的综合,灵活运用弦长公式,韦达定理等即可求解,属于常考题型.
22.(1)答案见解析
(2)
【分析】(1)对函数求导,通过讨论函数单调性决定函数零点个数即可;
(2)首先将原不等式转化为,再构造函数,通过研究的单调性判断出,从而求解取值范围即可.
【详解】(1)由得,
当时,,在区间上单调递增,且无限趋近于0时,,
又,故只有1个零点;
当时,令,解得,令,解得,
故在区间上单调递减,在区间上单调递增;
所以当时,取得最小值,
当时,,所以函数无零点,
当时,恒成立,所以函数无零点,
综上所述,当时,无零点,当时,只有一个零点;
(2)由已知有,所以,
所以,
构造函数,则原不等式转化为在上恒成立,
,记,所以,
令,解得,令,解得,
故在区间上单调递减,在区间上单调递增,
所以,所以,即单调递增,
所以在上恒成立,
即在上恒成立,
令,,则,
令,解得,令,解得,
故在单调递减,单调递增,
故的最小值为,
故的取值范围是.
方法点睛:导函数处理零点个数问题,由于涉及多类问题特征(包括单调性,特殊位置的函数值符号,隐零点的探索、参数的分类讨论等),需要学生对多种基本方法,基本思想,基本既能进行整合,注意思路是通过极值的正负和函数的单调性判断函数的走势,从而判断零点个数,较为复杂和综合的函数零点个数问题,分类讨论是必不可少的步骤,在哪种情况下进行分类讨论,分类的标准,及分类是否全面,都是需要思考的地方.
相关试卷
这是一份2023-2024学年广东省广州市天河区高一(上)期末数学试卷(含解析),共13页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年广东省广州市天河区高三上学期11月月考质量检测数学模拟试题(含解析),共19页。试卷主要包含了非选择题的作答,已知,为函数的零点,,若,则,若,则下列不等式正确的是等内容,欢迎下载使用。
这是一份广东省广州市培英中学2023-2024学年高二上学期期中质量检测数学试题,共4页。