所属成套资源:2023-2024年新高考数学一轮复习培优教案 (原卷版+教师版)
- 2023-2024年新高考数学一轮复习培优教案2.5《对数与对数函数》 (2份打包,原卷版+教师版) 教案 0 次下载
- 2023-2024年新高考数学一轮复习培优教案2.7《函数与方程》 (2份打包,原卷版+教师版) 教案 0 次下载
- 2023-2024年新高考数学一轮复习培优教案3.1《导数的概念及运算》 (2份打包,原卷版+教师版) 教案 0 次下载
- 2023-2024年新高考数学一轮复习培优教案3.2.1《导数与函数的单调性、极值与最值及大题常考的4类题型》 (2份打包,原卷版+教师版) 教案 0 次下载
- 2023-2024年新高考数学一轮复习培优教案3.2.2《导数与函数问题常用到的4种方法》 (2份打包,原卷版+教师版) 教案 0 次下载
2023-2024年新高考数学一轮复习培优教案2.8《函数模型及其应用》 (2份打包,原卷版+教师版)
展开
这是一份2023-2024年新高考数学一轮复习培优教案2.8《函数模型及其应用》 (2份打包,原卷版+教师版),文件包含2023-2024年新高考数学一轮复习培优教案28《函数模型及其应用》教师版doc、2023-2024年新高考数学一轮复习培优教案28《函数模型及其应用》原卷版doc等2份教案配套教学资源,其中教案共24页, 欢迎下载使用。
1.利用给出的具体函数模型解决实际问题,凸显数学运算的核心素养.
2.给出具体实际问题,借助所学基本初等函数的特点,建立恰当的函数模型解决实际问题,凸显数学建模、数学运算的核心素养.
[理清主干知识]
1.几类常见的函数模型
2.三种基本初等函数模型的性质
[澄清盲点误点]
一、关键点练明
1.下列函数中,随x的增大,y的增长速度最快的是( )
A.y=eq \f(1,100)ex B.y=100ln x C.y=x100 D.y=100·2x
2.某物体一天内的温度T关于时间t的函数解析式为T(t)=t3﹣3t+60,时间单位是h,温度单位为℃,t=0时表示中午12:00,则上午8:00时的温度为( )
A.8 ℃ B.18 ℃ C.58 ℃ D.128 ℃
3.在不考虑空气阻力的情况下,火箭的最大速度v米/秒和燃料的质量M千克、火箭(除燃料外)的质量m千克的函数关系式是v=2 000·ln(1+eq \f(M,m)).当燃料质量是火箭质量的________倍时,火箭的最大速度可达12千米/秒.
4.某城市客运公司确定客票价格的方法是:如果行程不超过100 km,票价是0.5元/km,如果超过100 km,超过100 km的部分按0.4元/km定价,则客运票价y(元)与行驶千米数x(km)之间的函数关系式是________________.
二、易错点练清
1.在某个物理实验中,测量得变量x和变量y的几组数据,如下表:
则对x,y最适合的拟合函数是( )
A.y=2x B.y=x2﹣1 C.y=2x﹣2 D.y=lg2x
2.某商店每月按出厂价每瓶3元购进一种饮料,根据以前的统计数据,若零售价定为每瓶4元,每月可销售400瓶;若零售价每降低(升高)0.5元,则可多(少)销售40瓶,在每月的进货当月销售完的前提下,为获得最大利润,销售价应定为( )
A.3.75元/瓶 B.7.5元/瓶 C.12元/瓶 D.6元/瓶
3.某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额x为8万元时,奖励1万元;销售额x为64万元时,奖励4万元.若公司拟定的奖励模型为y=alg4x+b.某业务员要得到8万元奖励,则他的销售额应为________万元.
考点一 应用所给函数模型解决实际问题
[典例] Lgistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Lgistic模型:I(t)=eq \f(K,1+e-0.23t-53),其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为(ln 19≈3)( )
A.60 B.63 C.66 D.69
[方法技巧]
应用所给函数模型解决实际问题的3个关注点
(1)认清所给函数模型,弄清哪些量为待定系数.
(2)根据已知利用待定系数法,确定模型中的待定系数.
(3)利用该模型求解实际问题.
[针对训练]
一个容器装有细沙a cm3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=ae﹣bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过______min,容器中的沙子只有开始时的八分之一.
考点二 构建函数模型解决实际问题
考法(一) 构建二次函数模型
[例1] 如图,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE=4米,CD=6米.为了合理利用这块钢板,在五边形ABCDE内截取一个矩形BNPM,使点P在边DE上.
(1)设MP=x米,PN=y米,将y表示成x的函数,并求该函数的解析式及定义域;
(2)求矩形BNPM面积的最大值.
[方法技巧]
在建立二次函数模型解决实际问题中的最优问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解.解决函数应用问题时,最后还要还原到实际问题.
考法(二) 构建指数函数、对数函数模型
[例2] (1)当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是( )
A.8 B.9 C.10 D.11
(2)已知世界人口在过去40年翻了一番,则每年人口平均增长率约是(参考数据:lg 2≈0.301 0,100.007 5≈1.017)( )
A.1.5% B.1.6% C.1.7% D.1.8%
[方法技巧]
两类函数模型的应用技巧
(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.
(2)在解决指数函数、对数函数模型问题时,一般需要先通过待定系数法确定函数解析式,再借助函数的图象求解最值问题,必要时可借助导数.
考法(三) 构建y=x+eq \f(a,x)(a>0)型函数模型
[例3] 某校为丰富师生课余活动,计划在一块直角三角形ABC的空地上修建一个占地面积为S(平方米)的AMPN矩形健身场地.如图,点M在AC上,点N在AB上,且P点在斜边BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].设矩形AMPN健身场地每平方米的造价为eq \f(37k,\r(S))元,再把矩形AMPN以外(阴影部分)铺上草坪,每平方米的造价为eq \f(12k,\r(S))元(k为正常数).
(1)试用x表示S,并求S的取值范围;
(2)求总造价T关于面积S的函数T=f(S);
(3)如何选取|AM|,使总造价T最低(不要求求出最低造价)?
[方法技巧]
“y=x+eq \f(a,x)(a>0)”型函数模型的求解策略
(1)“y=x+eq \f(a,x)”型函数模型在实际问题中会经常出现.解决此类问题,关键是利用已知条件,建立函数模型,然后化简整理函数解析式,必要时通过配凑得到“y=x+eq \f(a,x)”型函数模型.
(2)求函数解析式时要先确定函数的定义域.对于y=x+eq \f(a,x)(a>0,x>0)类型的函数最值问题,要特别注意定义域和基本不等式中等号成立的条件,如果在定义域内满足等号成立,可考虑用基本不等式求最值,否则要考虑函数的单调性,此时可借用导数来研究函数的单调性.
考法(四) 构建分段函数模型
[例4] 国庆期间,某旅行社组团去风景区旅游,若每团人数在30或30以下,飞机票每张收费900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75为止.每团乘飞机,旅行社需付给航空公司包机费15 000元.
(1)写出飞机票的价格关于人数的函数;
(2)每团人数为多少时,旅行社可获得最大利润?
[方法技巧]
分段函数模型的求解策略
(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解.
(2)构建分段函数时,要力求准确、简捷,做到分段合理、不重不漏.
(3)分段函数的最值是各段最大值(或最小值)中的最大者(或最小者).
[针对训练]
1.某商场销售A型商品.已知该商品的进价是每件3元,且销售单价与日均销售量的关系如下表所示:
请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为( )
A.4 B.5.5 C.8.5 D.10
2.在标准温度和大气压下,人体血液中氢离子的物质的量的浓度(单位ml/L,记作 [H+])和氢氧根离子的物质的量的浓度(单位ml/L,记作[OH﹣])的乘积等于常数10﹣14.已知pH值的定义为pH=﹣lg[H+],健康人体血液的pH值保持在7.35~7.45之间,那么健康人体血液中的eq \f([H+],[OH-])可以为(参考数据:lg 2=0.30,lg 3=0.48)( )
A.eq \f(1,2) B.eq \f(1,3) C.eq \f(1,6) D.eq \f(1,10)
3.已知某服装厂生产某种品牌的衣服,销售量q(x)(单位:百件)关于每件衣服的利润x(单位:元)的函数解析式为q(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(1 260,x+1),01)
C.y=ax2+b(a>0) D.y=lgax+b(a>1)
2.某新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是( )
A.y=100x B.y=50x2﹣50x+100
C.y=50×2x D.y=100lg2x+100
3.某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为( )
A.eq \f(p+q,2) B.eq \f(p+1q+1-1,2) C.eq \r(pq) D.eq \r(p+1q+1)﹣1
4.(多选)某工厂生产一种溶液,按市场要求该溶液的杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少eq \f(1,3),若使这种溶液的杂质含量达到市场要求,则过滤次数可以为(参考数据:lg 2≈0.301,lg 3≈0.477)( )
A.6 B.7 C.8 D.9
5.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=ert描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( )
A.1.2天 B.1.8天 C.2.5天 D.3.5天
6.华罗庚是上世纪我国伟大的数学家,以华氏命名的数学科研成果有“华氏定理”“华氏不等式”“华王方法”等.他除了数学理论研究,还在生产一线大力推广了“优选法”和“统筹法”.“优选法”,是指研究如何用较少的试验次数,迅速找到最优方案的一种科学方法.在当前防疫取得重要进展的时刻,为防范机场带来的境外输入,某机场海关在对入境人员进行检测时采用了“优选法”提高检测效率:每16人为一组,把每个人抽取的鼻咽拭子分泌物混合检查,若为阴性,则全部放行;若为阳性,则对该16人再次抽检确认感染者.某组16人中恰有一人感染(鼻咽拭子样本检验将会是阳性),若逐一检测可能需要15次才能确认感染者.现在先把这16人均分为2组,选其中一组8人的样本混合检查,若为阴性,则认定在另一组;若为阳性,则认定在本组.继续把认定的这组的8人均分为2组,选其中一组4人的样本混合检查……依此类推,最终从这16人中认定那名感染者需要经过检测的次数为( )
A.3 B.4 C.6 D.7
7.如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4 m和a m(01)
y=lgax(a>1)
y=xn(n>0)
在(0,+∞)上的单调性
单调递增
单调递增
单调递增
增长速度
越来越快
越来越慢
相对平稳
图象的变化
随x的增大,逐渐表现为与y轴平行
随x的增大,逐渐表现为与x轴平行
随n值变化而各有不同
值的比较
存在一个x0,当x>x0时,有lgax
相关教案
这是一份新高考数学一轮复习讲义+分层练习 2.8《函数的图象》教案 (2份打包,原卷版+教师版),文件包含新高考数学一轮复习讲义+分层练习28《函数的图象》教案原卷版doc、新高考数学一轮复习讲义+分层练习28《函数的图象》教案原卷版pdf、新高考数学一轮复习讲义+分层练习28《函数的图象》教案教师版doc、新高考数学一轮复习讲义+分层练习28《函数的图象》教案教师版pdf等4份教案配套教学资源,其中教案共45页, 欢迎下载使用。
这是一份2023-2024年新高考数学一轮复习培优教案8.5《双曲线》 (2份打包,原卷版+教师版),文件包含2023-2024年新高考数学一轮复习培优教案85《双曲线》教师版doc、2023-2024年新高考数学一轮复习培优教案85《双曲线》原卷版doc等2份教案配套教学资源,其中教案共31页, 欢迎下载使用。
这是一份2023-2024年新高考数学一轮复习培优教案8.4《椭圆》 (2份打包,原卷版+教师版),文件包含2023-2024年新高考数学一轮复习培优教案84《椭圆》教师版doc、2023-2024年新高考数学一轮复习培优教案84《椭圆》原卷版doc等2份教案配套教学资源,其中教案共31页, 欢迎下载使用。