所属成套资源:2023年人教版数学七年级上册期末专项练习 (2份打包,答案版+教师版)
2023年人教版数学七年级上册期末专项练习《计算类题型练习》(2份打包,答案版+教师版)
展开
这是一份2023年人教版数学七年级上册期末专项练习《计算类题型练习》(2份打包,答案版+教师版),文件包含2023年人教版数学七年级上册期末专项练习《计算类题型练习》教师版doc、2023年人教版数学七年级上册期末专项练习《计算类题型练习》含答案doc等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
1.计算:0-(-6)+2-(-13)-(+8);
2.计算:eq \f(1,3)-(+0.25)+(-eq \f(3,4))-(-eq \f(2,3)).
3.计算:(﹣eq \f(4,7))×eq \f(2,3)×(﹣1eq \f(3,4))×eq \f(1,2).
4.计算:(﹣eq \f(1,6)+eq \f(3,20)+eq \f(4,5)﹣eq \f(11,12))×(﹣60);
5.计算:(-5)2×[2-(-6)]-300÷5;
6.计算:(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)].
7.计算:﹣14÷(﹣5)2×(﹣eq \f(5,3))+|0.8﹣1|
8.计算:﹣14﹣16÷(﹣2)3+|﹣eq \f(1,2)|×(1﹣0.5)
9.化简:(2m2﹣3mn+8)﹣(5mn﹣4m2+8).
10.化简:(3x2﹣x+2)﹣2(x2+x﹣1);
11.化简:7a2b﹣(﹣4a2b+5ab2)﹣2(2a2b﹣3ab2).
12.化简:(﹣4b2+3a2)﹣(a2﹣2b2)﹣2(b2+a2)
13.化简:(3m+2)﹣3(m2﹣m+1)+(3﹣6m).
14.化简:2(3a2+4b)+3(﹣6a2﹣5b)
15.化简:﹣3(2x2﹣xy)+4(x2+xy﹣6).
16.化简:2a﹣3b﹣[4a﹣(3a﹣b)].
17.解方程:2(y+2)﹣3(4y﹣1)=9(1﹣y);
18.解方程:5(x﹣2)=6﹣2(2x﹣1)
19.解方程:3x﹣7(x﹣1)=3﹣2(x+3)
20.解方程:eq \f(m-1,2)=eq \f(2m,3)+1;
21.解方程:eq \f(3x+5,2)=eq \f(7+x,6);
22.解方程:eq \f(1,2)[x+eq \f(1,2)(x-1)]=eq \f(1,4)(x﹣1).
23.解方程:eq \f(3x-1,4)-1=eq \f(5x-7,6).
24.解方程:eq \f(6,5)[eq \f(5,6)(2x+1)+5]﹣1=4x.
25.有一种算“24点”的游戏,其游戏规则如下:取四个数,将这四个数(每个数只能用一次)进行加减乘除运算,使其结果等于24.现有四个有理数:3,4,-6,10,请你用两种不同的运算方法,使其结果为24.
26.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.
(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;
(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.
27.已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1.
(1)求3A+6B;
(2)若3A+6B的值与x无关,求y的值.
28.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.
29.小明的练习册上有一道方程题,其中一个数字被墨水污染了,成为eq \f(3x+1,5)=1﹣eq \f(x+●,5).他翻看书后的答案,知道了这个方程的解是x=eq \f(1,4),于是他把被污染的数字求出来了.请你把小明的计算过程写出来.
20.已知k是不大于10的正整数,试找出一个k的值,使关于x的方程2(5x-6k)=x-5k-1的解也是正整数,并求出此方程的解.
\s 0 答案
1.解:0-(-6)+2-(-13)-(+8)
=6+2-(-13)-(+8)
=8+13-8
=13.
2.解:eq \f(1,3)-(+0.25)+(-eq \f(3,4))-(-eq \f(2,3))
=eq \f(1,3)+(-eq \f(1,4))+(-eq \f(3,4))+eq \f(2,3)
=eq \f(1,3)+eq \f(2,3)+[-eq \f(1,4)+(-eq \f(3,4))]
=1+(-1)=0.
3.解:原式=eq \f(4,7)×eq \f(2,3)×eq \f(7,4)×eq \f(1,2)=(eq \f(4,7)×eq \f(7,4))×(eq \f(2,3)×eq \f(1,2))=1×eq \f(1,3)=eq \f(1,3).
4.解:原式=(﹣eq \f(1,6))×(﹣60)+eq \f(3,20)×(﹣60)+eq \f(4,5)×(﹣60)﹣eq \f(11,12)×(﹣60)
=10﹣9﹣48+55
=8.
5.解:原式=140
6.解:原式=﹣1×(﹣5)÷(9﹣10)=5÷(﹣1)=﹣5.
7.解:﹣14÷(﹣5)2×(﹣eq \f(5,3))+|0.8﹣1|
=﹣1÷25×(﹣eq \f(5,3))+0.2
=(﹣eq \f(1,25))×(﹣eq \f(5,3))+0.2
=
8.解:原式=﹣1﹣16÷(﹣8)+eq \f(1,2)×eq \f(1,2)=﹣1+2+eq \f(1,4)=eq \f(5,4).
9.解:原式=2m2﹣3mn+8﹣5mn+4m2﹣8=6m2﹣8mn.
10.解:(3x2﹣x+2)﹣2(x2+x﹣1)
=3x2﹣x+2﹣2x2﹣2x+2
=x2﹣3x+4.
11.解:7a2b﹣(﹣4a2b+5ab2)﹣2(2a2b﹣3ab2)
=7a2b+4a2b﹣5ab2﹣4a2b+6ab2
=7a2b+ab2.
12.解:原式=﹣4b2+3a2﹣a2+2b2﹣2b2﹣2a2=﹣4b2.
13.解:(3m+2)﹣3(m2﹣m+1)+(3﹣6m)
=3m+2﹣3m2+3m﹣3+3﹣6m
=﹣3m2+2.
14.解:原式=6a2+8b﹣18a2﹣15b=﹣12a2﹣7b.
15.解:﹣3(2x2﹣xy)+4(x2+xy﹣6),
=﹣6x2+3xy+4x2+4xy﹣24,
=﹣2x2+7xy﹣24.
16.原式=2a﹣3b﹣4a+3a﹣b=a﹣4b.
17.解:去括号,得2y+4﹣12y+3=9﹣9y.
移项,得2y﹣12y+9y=9﹣4﹣3.
合并同类项,得﹣y=2,
∴y=﹣2.
18.解:去括号得:5x﹣10=6﹣4x+2,
移项合并得:9x=18,
解得:x=2.
19.解:x=eq \f(10,3).
20.解:去分母,得3(m﹣1)=4m+6.
去括号,得3m﹣3=4m+6.
移项,得3m﹣4m=6+3.
合并同类项,得﹣m=9.
两边同除以﹣1,得m=﹣9.
21.解:去分母,得3(3x+5)=7+x.
去括号,得9x+15=7+x.
移项,得9x﹣x=7﹣15.
合并同类项,得8x=﹣8.
两边同除以8,得x=﹣1.
22.解:去中括号,得
eq \f(1,2)x+eq \f(1,4)(x﹣1)=eq \f(1,4)(x﹣1).
移项、合并同类项,得eq \f(1,2)x=0.
两边同乘2,得x=0.
23.解:去分母,得3(3x-1)-12=2(5x-7),
去括号,得9x-3-12=10x-14,
移项,得9x-10x=-14+15,
合并,得-x=1,
系数化为1,得x=-1.
24.解:去括号,得2x+1+6-1=4x,
移项合并同类项,得2x=6,
两边同时除以2,得x=3.
25.解:答案不唯一,如:(10-4)×3-(-6)=24;10-3×(-6)-4=24.
26.解:(1)2+3+4=9,
9﹣6﹣4=﹣1,
9﹣6﹣2=1,
9﹣2﹣7=0,
9﹣4﹣0=5,
如图所示:
(2)﹣3+1﹣4=﹣6,
﹣6+1﹣(﹣3)=﹣2,
﹣2+1+4=3,
如图所示:
x=3﹣4﹣(﹣6)=5,
y=3﹣1﹣(﹣6)=8,
x+y=5+8=13.
27.解:(1)3A+6B
=3(2x2+3xy﹣2x﹣1)+6(﹣x2+xy﹣1)
=6x2+9xy﹣6x﹣3﹣6x2+6xy﹣6
=15xy﹣6x﹣9.
(2)由(1)知3A+6B=15xy﹣6x﹣9=(15y﹣6)x﹣9,要使该值与x无关,
则15y﹣6=0,解得y=eq \f(2,5).
28.解:原式=﹣6xy+2x2﹣[2x2﹣15xy+6x2﹣xy]
=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy
∵|x+2|+(y﹣3)2=0
∴x=﹣2,y=3,
∴原式=﹣6x2+10xy
=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.
29.解:设被污染的数字为m.
把x=eq \f(1,4)代入方程,得eq \f(3×\f(1,4)+1,5)=1﹣eq \f(\f(1,4)+m,5).
两边同乘5,得eq \f(3,4)+1=5﹣(eq \f(1,4)+m).
去括号,得eq \f(7,4)=5﹣eq \f(1,4)﹣m.
移项、合并同类项,得m=3.
所以被污染的数字是3.
30.解:由题意得9x=7k-1,k,x都是正整数,
且k不大于10,
所以k=4,
则原方程的解为x=3.
相关试卷
这是一份2023年人教版数学七年级上册期末专项练习《数轴专项复习》(2份打包,答案版+教师版),文件包含2023年人教版数学七年级上册期末专项练习《数轴专项复习》教师版doc、2023年人教版数学七年级上册期末专项练习《数轴专项复习》含答案doc等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
这是一份2023年人教版数学七年级上册期末专项练习《绝对值专项复习》(2份打包,答案版+教师版),文件包含2023年人教版数学七年级上册期末专项练习《绝对值专项复习》教师版doc、2023年人教版数学七年级上册期末专项练习《绝对值专项复习》含答案doc等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
这是一份2023年人教版数学七年级上册期末专项练习《解答题中档题型练习》(2份打包,答案版+教师版),文件包含2023年人教版数学七年级上册期末专项练习《解答题中档题型练习》教师版doc、2023年人教版数学七年级上册期末专项练习《解答题中档题型练习》含答案doc等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。