初中数学人教版七年级上册第二章 整式的加减2.1 整式教学设计
展开这是一份初中数学人教版七年级上册第二章 整式的加减2.1 整式教学设计,共6页。教案主要包含了复习提问,新授,范例学习,巩固练习,课堂小结,作业布置等内容,欢迎下载使用。
课本第56页至第59页.
教学目标
1.知识与技能
使学生理解多项式、整式的概念,会准确确定一个多项式的项数和次数.
2.过程与方法
通过实例列整式,培养学生分析问题、解决问题的能力.
3.情感态度与价值观
培养学生积极思考的学习态度,合作交流意识,了解整式的实际背景,进一步感受字母表示数的意义.
重、难点与关键
1.重点:多项式以及有关概念.
2.难点:准确确定多项式的次数和项.
3.关键:掌握单项式和多项式次数之间的区别和联系.
教具准备
投影仪.
教学过程
一、复习提问
1.什么叫单项式?举例说明.
2.怎样确定一个单项式的系数和次数?-的系数、次数分别是多少?
3.列式表示下列问题:
(1)一个数比数x的2倍小3,则这个数为________.
(2)买一个篮球需要x(元),买一个排球需要y(元),买一个足球需要z(元),买3个篮球,5个排球,2个足球共需________元.
(3)如图1,三角尺的面积为________.
(1) (2)
(4)如图2是一所住宅的建筑平面图,这所住宅的建筑面积是________平方米.
老师操作投影仪,展示上述问题,关注学生列式情况,学生小组交流、合作学习.
思路点拨:(1)数x的2倍表示为2x,因此比x的2倍小3的数为2x-3;
(2)一个篮球x(元),3个篮球为3x元;一个排球y(元),5个排球要5y元;一个足球z(元),2个足球要2z元,因此一共需(3x+5x+2z)元;
(3)三角尺的面积等于三角形的面积减去圆的面积,三角形的面积为ab,圆面积为r2,因此三角尺的面积为ab-r2;
(4)每个房间的建筑面积分别为x2平方米,2x平方米,6平方米,12平方米,因此这所住宅的建筑面积为(x2+2x+18)平方米.
上面列出的式子2x-3,3x+5y+2z,ab-r2,x2+2x+18,它们是单项式吗?这些式子有什么共同特点?与单项式有什么关系?
2x-3可看作2x与-3的和:3x+5y+2z可以看作单项式3x、5y与2z的和;同样ab-r2看作ab与-r2的和,x2+2x+18可以x2、2x、18的和.
二、新授
请同学们阅读课本第57页有关内容,并回答下列问题.
1.几个单项式的和叫做_________;
2.在多项式中,每个单项式叫做_________;
3.在多项式中,不含字母的项叫做_________;
4.在多项式中,_____________________,叫做这个多项式的次数.
5.多项式的次数与单项式的次数有什么区别?
6.请说出上面各多项式的次数和项.
思路点拨:(1)多项式的各项应包括它前面的符号,比如,多项式6x2-x-3中第二项是-x,而不是x,常数项是-3,不是3.多项式没有系数概念,但其每一项均有系数,每一项的系数应包括自己的符号.
(2)多项式的次数与单项式的次数概念不同,但又有联系,首先求出此多项式各项(单项式)的次数,次数最高的就是这个多项式的次数.
(3)一个多项式的最高次项可以不唯一,次高项也可以不唯一,如,多项式3x2y-xy2+x2-xy-5中,最高次项为3x2y和-xy2,二次项也有2项,x2和-xy,这个多项式为二次五项式.
单项式和多项式统称为整式,例如:100t,6a3,vt,-n,2x-3,3x+5y+2z等都是整式.
三、范例学习
例1.用多项式填空,并指出它们的项和次数.
(1)温度由t℃下降5℃后是_______℃.
(2)甲数x的与乙数y的的差可以表示为_________.
(3)如课本图2.1-3,圆环的面积为________.
(4)如课本图2.1-4,钢管的体积是________.
思路点拨:(1)t-5,它的项为t和-5,次数是1;(2)甲数x的表示为x,乙数y的表示为y,它们的差为x-y,它的项为x和-y,次数为1;(3)圆环面积等于大圆面积减去小圆面积,因此圆环面积为R2-r2,它的项是R2-r2,次数是2(是常数是R2的系数).(4)钢管的体积等于大圆柱的体积减去小圆柱的体积,即R2a-r2a,它的项是R2a和-r2a,次数是3.
例2.一条河流的水流速度为2.5千米/时,如果已知船在静水中的速度,那么船在这条河流中顺水行驶和逆水行驶的速度分别怎样表示?如果甲、乙两条船在静水中的速度分别是20千米/时和35千米/时,则它们在这条河流中的顺水行驶和逆水行驶的速度各是多少?
教师操作投影仪,展示例2,并引导学生进行分析:
顺水行驶时船的速度=船在静水中的速度+水流速度
逆水行驶时船的速度=船在静水中的速度-水流速度
这里水流速度为2.5千米/时,如果,我们设船在静水中的速度为v千米/时,那么船在顺水行驶时的速度表示为(v+2.5)千米/时,船在逆水行驶时的速度为(v-2.5)千米/时.
当v=20时,则v+2.5=20+2.5=22.5,v-2.4=20-2.5=17.5;当v=35时,则v+2.5=35+2.5=37.5,v-2.5=35-2.5=32.5.因此,甲船顺水行驶的速度是22.5千米/时,逆水行驶的速度为17.5千米/时;乙船顺水行驶的速度是37.5千米/时,逆水行驶的速度为32.5千米/时.
思路点拨:从例2可以看到:用整式表示实际问题中的数量关系,然后再将整式中的字母所表示的不同数代入计算,从而可求出相应的值,这给问题的解决带来方便.代入时,要将整式中省略掉的乘号添上.例如,当x=-1时,整式2x23x+1的值为2×(-1)2-3×(-1)+1=2×1+3+1=6.
四、巩固练习
1.下列式子中,哪些是单项式?哪些是多项式?哪些是整式?
3x,2x-1,,-ab,-5,-1,3m-4n+m2n.
(3x,-ab,-5都是单项式;2x-1,,3m-4n+m2n都是多项式;题目中除-1以外都是整式)
思路点拨:=+,是一次二次项,因为不是单项式,所以-1不是多项式,当然也不是整式.
2.判别正误:
(1)多项式-x2y+2x2-y的次数2.( )
(2)多项式--a+3a2的一次项系数是1.( )
(3)-x-y-z是三次三项式.( )
思路点拨:要求学生说明错误原因,并加以改正.
(1)次数是3;(2)一次项系数是-1,(3)是一次三项式.
3.课本第59页练习.
4.课本第61页第10题.
点拨:观察图形易知每增加一个梯形,图形的周长就增加3a,因此梯形个数为5时,周长为17a,梯形个数为6时,周长为20a.因为梯形的长、下底之和为3a,所以n个梯形按课本所示拼在一起所得图形较长两边长之和为3a·n,另外两边之和为2a,所以n个梯形拼成的图形周长为3an+2a.
根据这个整式3an+2a,我们很容易计算出n为任意正整数时,图形的周长,例如当n=10时,周长为32a,当n=56时,周长为170a.用整式表示实际问题中的数量关系,它比具体数字表达的式子更具有一般性,这给实际问题的解决带来很大方便.
教师引导,关注学生思路,指导学生合作交流,探索规律.
五、课堂小结
师生互动,共同小结本节课内容.
1.什么叫做多项式?多项式是整式吗?整式是多项式吗?
2.什么叫多项式的基?什么叫做常数项?举例说明?
3.什么叫做多项式的次数?
六、作业布置
1.课本第60页,习题2.1第2、3、4、5、6、7题.
2.选用课时作业设计.
第二课时作业设计
一、填空题.
1.在式子-ab,,-a2bc,1,x3-2x+3,,+1中,单项式的是______,多项式的是_______.
2.多项式-+2x-3是_______次_______项式,最高次项的系数是______,常数项是________.
3.2x2-3xy2+x-1的各项分别为________.
二、选择题.
4.一个五次多项式,它任何一项的次数( ).
A.都小于5 B.都等于5 C.都不小于5 D.都不大于5
5.下列说法正确的是( ).
A.x2+x3是五次多项式 B.不是多项式
C.x2-2是二次二项式 D.xy2-1是二次二项式
三、列式表示.
6.n为整数,不能被3整除的整数表示为________.
7.一个三位数,十位数字为x,个位数字比十位数字少3,百位数字是个位数字的3倍,则这个三位数可表示为________.
8.某班有学生a人,若每4人分成一组,有一组少2人,则所分组数是________.
9.如图3所示,阴影部分的面积表示为________.
(3) (4)
10.用火柴棒按图4的方式搭塔式三角形.
(1)观察填表:
(2)照这样下去,搭起的大三角形一条边用了n根火柴棒,这样的小三角形有多少个?
答案:
一、1.-ab,,x3-2x+3
2.三 三 - -3 3.2x,-3xy2,x,-1
二、4.D 5.C
三、6.3n+1,3n+2 7.300(x-3)+10x+(x-3)
8. 9.ab-·()2
10.(1)小三角形个数依次是1,4,9,16,火柴棒总根数依次为3,9,18,30
(2)n2
一条边火柴棒根数
1
2
3
4
小三角形个数
火柴棒总根数
相关教案
这是一份初中数学人教版七年级上册第二章 整式的加减2.1 整式教学设计,共5页。教案主要包含了教学目标,教学重点,教学难点,教学过程等内容,欢迎下载使用。
这是一份初中数学人教版七年级上册第二章 整式的加减综合与测试教案,共3页。
这是一份人教版七年级上册2.1 整式教案,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。