- 人教A版高中数学(必修第二册)同步培优讲义专题10.3 事件的相互独立性(重难点题型精讲)(2份打包,原卷版+教师版) 试卷 2 次下载
- 人教A版高中数学(必修第二册)同步培优讲义专题10.4 事件的相互独立性(重难点题型检测)(2份打包,原卷版+教师版) 试卷 0 次下载
- 人教A版高中数学(必修第二册)同步培优讲义专题10.6 频率与概率(重难点题型检测)(2份打包,原卷版+教师版) 试卷 1 次下载
- 人教A版高中数学(必修第二册)同步培优讲义专题10.7 古典概型大题专项训练(30道)(2份打包,原卷版+教师版) 试卷 4 次下载
- 人教A版高中数学(必修第二册)同步培优讲义专题10.8 概率全章综合测试卷(基础篇)(2份打包,原卷版+教师版) 试卷 4 次下载
人教A版 (2019)必修 第二册10.3 频率与概率优秀复习练习题
展开1.频率与概率
(1)频率与概率的区别
(2)频率的特点
随机事件在一次试验中是否发生具有不确定性,但是,在相同条件下的大量重复试验中,它发生的频
率有以下特点.
①在某次随机试验中,事件A发生的频率是一个变量,事先是无法确定的.但在大量重复试验后,它又
具有稳定性,即频率在某个“常数”附近摆动,并且随着试验次数的增加,摆动的幅度具有越来越小的趋势.
②有时候试验也可能出现频率偏离“常数”较大的情况,但是随着试验次数的增加,频率偏离“常数”的可
能性会减小.
③个别随机事件在一次试验中可能出现也可能不出现,但在大量试验中,它出现的次数与总试验次数
之比常常是比较稳定的.这种现象称为频率的稳定性,是随机事件内在规律性的反映.
(3)频率的稳定性(用频率估计概率)
大量试验表明,在任何确定次数的随机试验中,一个随机事件A发生的频率具有随机性.一般地,随着
试验次数n的增大,频率偏离概概率的幅度会缩小,即事件A发生的频率 SKIPIF 1 < 0 (A)会逐渐稳定于事件A发生的
概率P(A).我们称频率的这个性质为频率的稳定性.因此,我们可以用频率 SKIPIF 1 < 0 (A)估计概率P(A).
2.生活中的概率
(1)游戏的公平性
在各类游戏中,如果每个游戏参与者获胜的概率相等,那么游戏是公平的.例如,在体育比赛中,裁判
员用抽签器决定两个运动员谁先发球,两个运动员获得发球权的概率均为0.5,所以这个规则是公平的.
(2)天气预报的概率解释
天气预报是气象专家依据气象观测资料和气象学理论以及专家们的实际经验,经过分析推断得到的.天
气预报的概率属于主观概率,这是因为在现有的条件下,不能对“天气”做多次重复试验,进行规律的总结,因此,在天气预报中所提及的概率和我们前面通过频率稳定性来定义的概率并不一样.
另外,天气预报中降水概率的大小只能说明降水的可能性大小,概率值越大,表示降水的可能性越大.在一次试验中“降水”这个事件是否发生仍然是随机的.例如,天气预报说“明天降水的概率为90%”,尽管明天下雨的可能性很大,但由于“明天下雨”是随机事件,因此明天仍然有可能不下雨.
3.随机数的产生
(1) 随机数的定义
随机数就是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会相等.
(2)产生随机数的方法
①利用抽签法产生随机数
要产生1 SKIPIF 1 < 0 n(n∈ SKIPIF 1 < 0 )之间的随机整数,把n个大小、形状相同的小球分别标上1,2,3, SKIPIF 1 < 0 ,n放入一
个袋中,把它们充分搅拌,然后从中摸出一个球,这个球上的数就称为随机数.
②利用计算机或计算器产生伪随机数
计算机或计算器产生的随机数是依照确定算法产生的数,具有周期性(周期很长),它们具有类似随机数
的性质.因此,计算机或计算器产生的并不是真正的随机数,我们称它们为伪随机数.
(3)用随机模拟法估计概率
①随机模拟法产生的必要性
用频率估计概率时,需做大量的重复试验,费时费力,并且有些试验具有破坏性,有些试验无法进行,
因而随机模拟试验就成为一种重要的方法,它可以在短时间内多次重复.
②随机模拟法估计概率的思想
随机模拟法是通过将一次试验所有可能发生的结果数字化,用计算机或计算器产生的随机数来替代每
次试验的结果.其基本思想是,用产生整数值的随机数的频率估计事件发生的概率.
③随机模拟法的优点
不需要对试验进行具体操作,是一种简单、实用的科研方法,可以广泛地应用到生产生活的各个领域
中去.
④随机模拟法的步骤
建立概率模型;进行模拟试验(可用计算器或计算机进行);统计试验结果.
【题型1 频率与概率的区别与特点】
【方法点拨】
根据频率与概率的区别,频率的稳定性等基础知识,进行求解即可.
【例1】(2023·高一课时练习)以下说法正确的是( )
A.概率与试验次数有关B.在试验前无法确定概率
C.频率与试验次数无关D.频率是在试验后得到的
【变式1-1】(2023·全国·高一专题练习)下列四个命题中真命题的个数为( )个
①有一批产品的次品率为,则从中任意取出件产品中必有件是次品;
②抛次硬币,结果次出现正面,则出现正面的概率是;
③随机事件发生的概率就是这个随机事件发生的频率;
④掷骰子次,得点数为的结果有次,则出现点的频率为.
A.B.C.D.
【变式1-2】(2022秋·河北保定·高二阶段练习)抛掷一枚硬币100次,正面向上的次数为48次,下列说法正确的是( )
A.正面向上的概率为0.48B.反面向上的概率是0.48
C.正面向上的频率为0.48D.反面向上的频率是0.48
【变式1-3】(2022·上海·高二专题练习)考虑掷硬币试验,设事件“正面朝上”,则下列论述正确的是( )
A.掷2次硬币,事件“一个正面,一个反面”发生的概率为
B.掷8次硬币,事件A发生的次数一定是4
C.重复掷硬币,事件A发生的频率等于事件A发生的概率
D.当投掷次数足够多时,事件A发生的频率接近0.5
【题型2 频率估计概率在统计中的应用】
【方法点拨】
此类题目的解题方法是:先利用频率的计算公式依次计算出各个频率,然后根据频率与概率的关系估计事
件发生的概率,据此得出统计推断.
【例2】(2022秋·陕西榆林·高二阶段练习)从某高校随机抽样100名学生,获得了他们一周课外阅读时间(单位:小时)的样本数据,整理得到样本数据的频率分布直方图(如图所示),其中样本数据的分组区间为:,.
(1)求这100名学生中该周课外阅读时间在范围内的学生人数;
(2)估计该校学生每周课外阅读时间超过6小时的概率.
【变式2-1】(2022·全国·高一专题练习)某超市从2019年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按,,,,分组,得到频率分布直方图如下,假设甲、乙两种酸奶的日销售量相互独立.
(1)写出频率分布直方图(甲)中的的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,,试比较与的大小;(只需写出结论)
(2)用频率估计概率,求在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱的概率.
【变式2-2】(2023·高一课时练习)某校高三分为四个班.调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生数依次为22,,,人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.
(1)问各班被抽取的学生人数各为多少人?
(2)在抽取的所有学生中,任取一名学生,求分数不小于90分的概率.
【变式2-3】(2023秋·北京平谷·高二期末)某高中高一500名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:,,…,,并整理得到频率分布直方图如图所示.
(1)从总体的500名学生中随机抽取一人,估计其分数小于60的概率;
(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间内的人数;
(3)估计随机抽取的100名学生分数的众数,估计测评成绩的75%分位数;
(4)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.
【题型3 游戏公平性的判断】
【方法点拨】
无论是怎样的游戏,游戏公平与否就是看参与游戏的每个个体获胜的概率是否相同,相同则公平,不相同
则不公平.
【例3】(2022·全国·高一专题练习)甲、乙两人做游戏,下列游戏中不公平的是( )
A.抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜
B.同时抛两枚相同的骰子,向上的点数之和大于7则甲胜,否则乙胜
C.从一副不含大、小王的扑克牌中抽一张,扑克牌是红色则甲胜,是黑色则乙胜
D.甲、乙两人各写一个数字,若是同奇或同偶则甲胜,否则乙胜
【变式3-1】(2022·高二课时练习)张明与张华两人做游戏,下列游戏中不公平的是( )
①抛掷一枚骰子,向上的点数为奇数则张明获胜,向上的点数为偶数则张华获胜;
②同时抛掷两枚硬币,恰有一枚正面向上则张明获胜,两枚都正面向上则张华获胜;
③从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则张明获胜,扑克牌是黑色的则张华获胜;
④张明、张华两人各写一个数字6或8,如果两人写的数字相同张明获胜,否则张华获胜.
A.①②B.②C.②③④D.①②③④
【变式3-2】(2022·高二课时练习)下面有三种游戏规则:袋子中分别装有大小相同的球,从袋中取球.
其中不公平的游戏是( )
A.游戏1;B.游戏1和游戏3;C.游戏2;D.游戏3.
【变式3-3】(2022·高一课时练习)甲、乙两人做游戏,下列游戏不公平的是( )
A.抛掷一枚骰子,向上的点数为奇数则甲获胜,向上的点数为偶数则乙获胜
B.同时抛掷两枚硬币,恰有一枚正面向上则甲获胜,两枚都正面向上则乙获胜
C.从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则甲获胜,扑克牌是黑色的则乙获胜
D.甲、乙两人各写一个数字1或2,如果两人写的数字相同甲获胜,否则乙获胜
【题型4 概率模拟问题】
【方法点拨】
求解概率模拟问题的注意点
(1)选择适当的替代物,因为替代物的选取是否合理决定了试验结果的可信度,因此在用替代物模拟试验中,
要求必须在相同条件下进行.
(2)用计算机(器)模拟试验时对随机数范围的确定.例如,有20张大小相同的卡片,分别写有1~20的数,从
中随机抽取一张,求结果是5的倍数的概率,在这种情况下,随机数的范围应是1~20内的整数.
【例4】(2023·全国·高一专题练习)气象台预报“本市未来三天降雨的概率都为30%”,现采用随机模拟的方法估计未来三天降雨的情况:先由计算器产生0到9之间取整数值的随机数,指定1,2,3表示降雨,4,5,6,7,8,9,0表示不降雨;再以每三个随机数为一组,代表三天降雨的结果.经随机模拟产生了20组随机数:
907 966 191 925 271 932 815 458 569 683
431 257 393 027 556 481 730 113 537 989
据此估计,未来三天恰有一天降雨的概率为( )
A.0.2B.0.3C.0.4D.0.5
【变式4-1】(2022秋·湖北·高二期中)在一个实验中,某种豚鼠被感染A病毒的概率均为40%,现采用随机模拟方法估计三只豚鼠中被感染的概率:先由计算机产生出[0,9]之间整数值的随机数,指定1,2,3,4表示被感染,5,6,7,8,9,0表示没有被感染.经随机模拟产生了如下20组随机数:
192 907 966 925 271 932 812 458 569 683
257 393 127 556 488 730 113 537 989 431
据此估计三只豚鼠中至少一只被感染的概率为( ).
A.0.25B.0.4C.0.6D.0.75
【变式4-2】(2023秋·陕西榆林·高二期末)天气预报说,在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率.用1,2,3,4,5,6表示下雨,用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为( )
A.B.C.D.
【变式4-3】(2022·全国·高一专题练习)某种心脏手术,成功率为0.6,现采用随机模拟方法估计“3例心脏手术全部成功”的概率:先利用计算器或计算机产生0~9之间取整数值的随机数,由于成功率是0.6,我们用0,1,2,3表示手术不成功,4,5,6,7,8,9表示手术成功;再以每3个随机数为一组,作为3例手术的结果,经随机模拟产生如下10组随机数:
812,832,569,683,271,989,730,537,925,907
由此估计“3例心脏手术全部成功”的概率为( )
A.0.2B.0.3C.0.4D.0.5
频率
本身是随机的,在试验之前是无法确定的,在相同的条件下做同样次数的重复试验,得到的事件的频率也可能会不同.
概率
本身是一个在[0,1]内的确定值,不随试验结果的改变而改变.
举例辨析
例如,在相同条件下掷一枚质地均匀的硬币1000次,出现正面向上的次数是521,则正面向上的频率 SKIPIF 1 < 0 (正面向上) SKIPIF 1 < 0 ,而正面向上的概率P(正面向上) SKIPIF 1 < 0 ,它是一个客观常数,
游戏1
游戏2
游戏3
3个黑球和1个白球
1个黑球和1个白球
2个黑球和2个白球
取1个球,再取1个球
取1个球
取1个球,再取1个球
取出两个球同色→甲胜
取出的球是黑球→甲胜
取出的两个球同色→甲胜
取出的两个球不同色→乙胜
取出的球是白球→乙胜
取出的两个球不同色→乙胜
高中数学人教A版 (2019)必修 第二册第十章 概率10.3 频率与概率精品练习题: 这是一份高中数学人教A版 (2019)必修 第二册第十章 概率10.3 频率与概率精品练习题,文件包含人教A版高中数学必修第二册同步培优讲义专题106频率与概率重难点题型检测教师版doc、人教A版高中数学必修第二册同步培优讲义专题106频率与概率重难点题型检测原卷版doc等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
必修 第二册10.1 随机事件与概率精品随堂练习题: 这是一份必修 第二册10.1 随机事件与概率精品随堂练习题,文件包含人教A版高中数学必修第二册同步培优讲义专题101随机事件与概率重难点题型精讲教师版doc、人教A版高中数学必修第二册同步培优讲义专题101随机事件与概率重难点题型精讲原卷版doc等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
数学必修 第二册9.2 用样本估计总体优秀课时作业: 这是一份数学必修 第二册9.2 用样本估计总体优秀课时作业,文件包含人教A版高中数学必修第二册同步培优讲义专题93用样本估计总体重难点题型精讲教师版doc、人教A版高中数学必修第二册同步培优讲义专题93用样本估计总体重难点题型精讲原卷版doc等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。