- 人教A版高中数学(选择性必修一)同步培优讲义专题3.2 椭圆及其标准方程-重难点题型检测(2份打包,原卷版+教师版) 试卷 1 次下载
- 人教A版高中数学(选择性必修一)同步培优讲义专题3.3 椭圆的简单几何性质-重难点题型精讲(2份打包,原卷版+教师版) 试卷 2 次下载
- 人教A版高中数学(选择性必修一)同步培优讲义专题3.5 直线与椭圆的位置关系-重难点题型精讲(2份打包,原卷版+教师版) 试卷 3 次下载
- 人教A版高中数学(选择性必修一)同步培优讲义专题3.6 直线与椭圆的位置关系-重难点题型检测(2份打包,原卷版+教师版) 试卷 0 次下载
- 人教A版高中数学(选择性必修一)同步培优讲义专题3.7 双曲线的标准方程和性质-重难点题型精讲(2份打包,原卷版+教师版) 试卷 5 次下载
人教A版 (2019)选择性必修 第一册第三章 圆锥曲线的方程3.1 椭圆精品练习题
展开考试时间:60分钟;满分:100分
姓名:___________班级:___________考号:___________
考卷信息:
本卷试题共22题,单选8题,多选4题,填空4题,解答6题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本节内容的具体情况!
一.选择题(共8小题,满分24分,每小题3分)
1.(3分)(上海市高二课时练习)离心率和椭圆形状的有关,据此判断椭圆和,则和哪个图形更为扁平( )
A.B.
C.相同D.无法判断
2.(3分)(2022·全国·高二课时练习)已知椭圆与,则两个椭圆( )
A.有相同的长轴与短轴B.有相同的焦距
C.有相同的焦点D.有相同的离心率
3.(3分)(2022·四川·高二期中(文))与椭圆有相同的焦点,且短半轴长为的椭圆方程是( )
A.B.C.D.
4.(3分)(2022·上海·高二期末)下列关于曲线的结论正确的是( )
A.曲线是椭圆B.y的取值范围是
C.关于直线对称D.曲线所围成的封闭图形面积大于6
5.(3分)(2022·全国·高三阶段练习(理))椭圆的左顶点为,点均在上,且关于原点对称.若直线的斜率之积为,则的离心率为( )
A.B.C.D.
6.(3分)(2023·全国·高三专题练习)已知是椭圆的右焦点,点在上,直线与轴交于点,点为C上的动点,则的最小值为( )
A.B.C.D.
7.(3分)(2022·全国·高三专题练习(文))如图是5号篮球在太阳光照射下的影子,已知篮球的直径为,现太阳光与地面的夹角为,则此椭圆形影子的离心率为( )
A.B.C.D.
8.(3分)(2022·内蒙古赤峰·三模(文))椭圆的左右焦点分别为为坐标原点,给出以下四个命题:
①过点的直线与椭圆交于两点,则△的周长为8;
②椭圆上存在点,使得;
③椭圆的离心率为;
④为椭圆一点,为圆上一点,则点的最大距离为3.
则以下选项正确的是( )
A.①②B.①③C.①②③④D.①②④
二.多选题(共4小题,满分16分,每小题4分)
9.(4分)(2023·全国·高三专题练习)已知椭圆中心在原点,焦点在坐标轴上,若椭圆的离心率为,且过点,则椭圆的标准方程为( )
A.B.C.D.
10.(4分)(2022·吉林·高二开学考试)据中国载人航天工程办公室消息,北京时间2021年11月8日1时16分,经过约6.5小时的出舱活动,神舟十三号航天员乘组密切协同,圆满完成出舱活动全部既定任务,航天员翟志刚,王亚平安全返回天和核心舱,出舱活动取得圆满成功.已知天和核心舱的运行轨道是以地球中心为一个焦点的椭圆,设其近地点距地面N千米,远地点距地面M千米,地球半径为R千米,则下列说法正确的是( )
A.椭圆的短轴长为千米B.椭圆的短轴长为千米
C.椭圆的焦距为千米D.椭圆的长轴长为千米
11.(4分)(2022·山东滨州·高二期末)已知椭圆C的两个焦点分别为,,离心率为,且点P是椭圆上任意一点,则下列结论正确的是( )
A.椭圆C的方程为
B.的最大值为
C.当时,
D.椭圆的形状比椭圆C的形状更接近于圆
12.(4分)(2022·广东·高三阶段练习)油纸伞是中国传统工艺品,至今已有1000多年的历史,为宣传和推广这一传统工艺,某市文化宫于春分时节开展油纸伞文化艺术节.活动中,某油纸伞撑开后摆放在户外展览场地上,如图所示,该伞的伞沿是一个半径为1的圆,圆心到伞柄底端的距离为1,阳光照射油纸丛在地面上形成了一个椭圆形的影子(春分时,该市的阳光照射方向与地面的夹角为),若伞柄底端正好位于该椭圆的左焦点位置,则( )
A.该椭圆的离心率为B.该椭圆的离心率为
C.该椭圆的焦距为D.该椭圆的焦距为
三.填空题(共4小题,满分16分,每小题4分)
13.(4分)(2022·全国·高二课时练习)若椭圆的焦距为6,则k的值为 .
14.(4分)(2022·全国·高二课时练习)以椭圆的两个焦点和短轴的两个顶点为四个顶点的椭圆的标准方程为 .
15.(4分)(2022·福建省高二期末)已知椭圆的一个顶点为,右焦点为F,直线BF与椭圆的另一个交点为M,且,则该椭圆的离心率是 .
16.(4分)(2022·全国·高二单元测试)若、是椭圆C:的两个焦点,过的直线l与椭圆C交于A、B两点,O为坐标原点,则下列说法中正确的是 .(填序号)
①椭圆C的离心率为; ②存在点A使得;
③若,则; ④面积的最大值为12.
四.解答题(共6小题,满分44分)
17.(6分)(2022·全国·高二专题练习)求下列椭圆的长轴和短轴的长、离心率、焦点和顶点坐标:
(1);
(2).
18.(6分)(2023·全国·高三专题练习)求满足下列各条件的椭圆的标准方程:
(1)长轴是短轴的3倍且经过点;
(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为;
(3)经过点,两点;
(4)与椭圆有相同离心率,且经过点.
19.(8分)(2022·全国·高二课时练习)已知椭圆C的离心率为,焦点、.
(1)求椭圆C的方程;
(2)已知、,是椭圆C在第一象限部分上的一动点,且∠APB是钝角,求的取值范围.
20.(8分)(2021·广东·高二期中)已知椭圆的焦距为,离心率为.
(1)求椭圆C的标准方程;
(2)若点,点B在椭圆C上,求线段长度的最大值.
21.(8分)(2022·全国·高二课时练习)某海面上有A,B两个观测点,点B在点A正东方向4 n mile处.经多年观察研究,发现某种鱼群(将鱼群视为点P)洄游的路线是以A,B为焦点的椭圆C.现有渔船发现该鱼群在与点A,点B距离之和为8 n mile处.在点A,B,P所在的平面内,以A,B所在的直线为轴,线段的垂直平分线为轴建立平面直角坐标系.
(1)求椭圆C的方程;
(2)某日,研究人员在A,B两点同时用声呐探测仪发出信号探测该鱼群(探测过程中,信号传播速度相同且鱼群移动的路程忽略不计),A,B两点收到鱼群的反射信号所用的时间之比为,试确定此时鱼群P的位置(即点P的坐标).
22.(8分)(2022·全国·高三专题练习)圆锥曲线又称圆锥截痕、圆锥截面、二次曲线,约在公元前300年左右就已被命名和研究了,数学家欧几里得、阿基米德、阿波罗尼斯对圆锥曲线的贡献都很大,阿波罗尼斯著有《圆锥曲线论》,对圆锥曲线的性质做了系统性的研究,之所以称为圆锥曲线,是因为这些曲线是由一个平面截一个正圆锥面得到的,其实用一个平面去截圆柱的侧面也会得到一些曲线.如图,一个底面半径为2、高为12的圆柱内有两个半径为2的球,分别与圆柱的上下底面相切,一个平面夹在两球之间,且与两球分别切于点,,该平面与圆柱侧面的交线为椭圆,求这个椭圆的离心率.
高中数学2.5 直线与圆、圆与圆的位置课后测评: 这是一份高中数学2.5 直线与圆、圆与圆的位置课后测评,文件包含人教A版高中数学选择性必修一同步培优讲义专题216圆与圆的位置关系-重难点题型检测教师版doc、人教A版高中数学选择性必修一同步培优讲义专题216圆与圆的位置关系-重难点题型检测原卷版doc等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
数学选择性必修 第一册2.3 直线的交点坐标与距离公式巩固练习: 这是一份数学选择性必修 第一册2.3 直线的交点坐标与距离公式巩固练习,文件包含人教A版高中数学选择性必修一同步培优讲义专题210点线间的对称关系-重难点题型检测教师版doc、人教A版高中数学选择性必修一同步培优讲义专题210点线间的对称关系-重难点题型检测原卷版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
数学3.2 双曲线精品同步达标检测题: 这是一份数学3.2 双曲线精品同步达标检测题,文件包含人教A版高中数学选择性必修一同步培优讲义专题310直线与双曲线的位置关系-重难点题型检测教师版doc、人教A版高中数学选择性必修一同步培优讲义专题310直线与双曲线的位置关系-重难点题型检测原卷版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。