2022-2023学年浙江省丽水市八年级下学期数学期末监测试卷
展开
这是一份2022-2023学年浙江省丽水市八年级下学期数学期末监测试卷,文件包含浙江省丽水市八年级下学期数学期末监测试卷docx、浙江省丽水市八年级下学期数学期末监测试卷参考答案docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
1.全卷共三大题,24 小题,满分为 100 分。
2.考试时间为 90 分钟,本次考试采用闭卷形式,不允许使用计算器。 3.全卷答案必须做在答题卷的相应位置上,做在试题卷上无效。
4.请用钢笔或黑色墨迹签字笔将学校、姓名、准考证号、座位号分别填在答题卷的相 应位置上。
一、选择题(本题有 10 小题,每小题 3 分,共 30 分.请选出各题中一个符合题意的正确选项,
不选、多选、错选,均不给分)
1.二次根式 中,字母 x 的取值范围为( ▲ )
A.x ≤2 B.x ≠2 C.x>2 D.x ≥2
2.下列图形中,是中心对称图形的是( ▲ )
A.等边三角形 B.直角三角形 C.平行四边形 D.正五边形
3.若反比例函数y = (k≠0)的图象经过点(1,2),则该图象必经过另一点( ▲ )
A.(-1,2) B.(-1,-2) C.(-2,1) D.(2,-1)
4.从甲、乙、丙、丁四名同学中选出一名同学参加数学抢答竞赛,四名同学数学平时成绩 的平均数及方差如下表所示:
根据表中数据,要从这四名同学中选择一名成绩好且发挥稳定的同学去参赛,那么应该 选的同学是( ▲ )
A.甲 B.乙 C.丙 D.丁
5.如图,在矩形ABCD 中,对角线 AC,BD 交于点 O, ∠ACB =25°,则∠AOB 的度数是( ▲ )
甲
乙
丙
丁
平均数(分)
96
93
98
98
方差(分 2)
3.5
3.3
3.3
6.1
A.50 。 B.55。
C.60 。 D.65。
6.一元二次方程 x2+6x =1 配方后可变形为( ▲ )
(第 5 题)
O
A.(x+3)2 =8 B.(x-3)2 =8 C.(x+3)2 =10 D.(x-3)2 =10
F
O
E
E
D
G
7.已知关于 x 的方程 ax2+bx+c =0(a ≠0),当 b2-4ac =0 时,方程的解为( ▲ )
b b b b
A x = x = - B.x = x = -
. 1 2a , 2 2a 1 a , 2 a
b b
C x = x = D x = x = -
. 1 2 2a . 1 2 2a
8.用反证法证明命题“在 Rt△ABC 中,若∠C=90°, ∠B≠45°,则 AC≠BC”时, 首先应假设( ▲ )
A.AC=BC B.AB=AC C. ∠B =45° D. ∠C≠90°
9.如图,在□ABCD 中,E,F 是对角线 BD 上不同的两个点.下列条件不能判定四边形 AECF
为平行四边形的是(
A.AE∥CF
C.BE=DF
▲ )
B.AE =CF
D. ∠BAE=∠DCF
A D
B
C
(第 9 题)
10.如图,在菱形 ABCD 中,AD =10,AC=12,点 E 是点 A 关于直线 CD 的对称点,连结 AE
交 CD 于点 F,连结 CE,DE,则 AE 的长是( ▲ )
A.16.8 B.19.2
A D
F
C
B
C.19.6 D.20
(第 10 题)
二、填空题(本题有 6 小题,每小题 3 分,共 18 分)
1 + 2x 的值为 ▲
.
11.当 x=4 时,二次根式
.
12.某中学开展“好书伴我成长”读书活动,随机调查了八年级 50 名学生一周读书的册数, 读 1 册书的有 15 人,读 2 册书的有 20 人,读 3 册书的有 15 人,则这 50 名学生一周平均 每人读书的册数是 ▲
.
13.已知一个多边形的每个外角都为 60°,则这个多边形的边数是 ▲
y
.
14.已知等腰三角形的底边长为 3,腰长是方程 x2 -6x+8=0 的一个根,则这个三角形的
周长为 ▲
C
B
k y =
E D
( x>0)的图象
15.如图,平面直角坐标系中,正方形ABCD 的顶点 A,B,分别在
x 轴,y 轴上,对角线交于点 E,反比例函数
x
A x
O
(第 15 题)
.
经过点 D,E.若 E 点坐标为(4,4),则 B 点坐标为 ▲
A
16.如图,在△ABC 中, ∠C=90°,在△ABC 内取一点 G,使点 G 到三角形三边距离 GD,GE,
GF 都相等,连结AG,BG,已知 BF=m,AE =n (m ≥n).
(1)若 m =n,则 CF 的长是 ▲
E
C
.
(用含 m 的代数式表示);
(2)当 CF=1,4m2+4n2 =109 时,m -n 的值为 ▲
B
F
(第 16 题)
八年级数学试题卷 第 2 页 共 4 页
A
三、解答题(本题有 8 小题,共 52 分)
17.计算(本题 6 分,每小题 3 分)
(1) (2 + ) ; (2) - 5 .
18.解方程(本题 6 分,每小题 3 分)
(1)x2 =4; (2)x (2x-1)-(2x-1)=0.
19.(本题 6 分)
已知 x,y 满足下表.
(1)求y 关于 x 的函数表达式;
(2)当 2<x<4 时,求y 的取值范围.
20.(本题 6 分)
据调查,八年级某班 30 名学生所穿校服尺寸绘制如下条形统计图:
(1)求这 30 名学生所穿校服尺寸的众数和中位数;
(2)若该校八年级共有 600 名学生,请你估计尺寸为 170 cm 的校服需要多少件.
x
…
-2
-1
1
4
…
y
…
-2
-4
4
1
…
18
15
12
9
6
3
0
30 名学生所穿校服尺寸统计图
人数
15
7
4
3
1
155 160 165 170 175 校服尺寸(cm)
(第 20 题)
21.(本题 6 分)
如图,在 Rt△ABC 中, ∠C=90°, A,B,C 是一个平行四边形的三个顶点,画出 一个平行四边形.
(1)请用三角板画出一个平行四边形的示意图;
(2)若AC =8,BC =6,求出你所画的平行四边形两条对角线的长.
B C
(第 21 题)
八年级数学试题卷 第 3 页 共 4 页
22.(本题 6 分)
如图,某学校有一块长 40m,宽 20m 的长方形空地,计划在其中修建三块相同的长方形
绿地,三块绿地之间及周边留有宽度相等的人行通道.
(1)若设计人行通道的宽度为 1m,则三块长方形绿地的面积共多少平方米?
(2)若三块长方形绿地的面积共 512m2,求人行通道的宽度.
23.(本题 8 分)
a
已知反比例函数y =
x
(第 22 题)
(a>0)过点A(x1,m),B(x2,n),m >n>0,且 m -n=5.
(1)当 a=6,x1 = 1 时,求 m 的值;
(2)若 x2 =2x1,求 n 的值;
(3)反比例函数y = (b<0)过点 C(x1-2,m),D(x2-3,n),求证: a-b=30.
24.(本题 8 分)
如图,在□ABCD 中,过点A 作AF⊥AB 交直线 CD 于点 F,且 AB=AF, BE 平分∠ABC
交 AD 于点 E,交 AF 于点 G,过点A 作AH⊥BE 交直线 CD 于点 H.
(1)求证: ∠ABE = ∠AEB;
(2)若 AB=3,AD=5,求线段 AH 的长;
(3)下列三个问题,依次为易、中、 难,对应的满分值为 1 分、 2 分、3 分,根据你的认
知水平,选择其中一个问题求解.
①当点 F 与点 C 重合时,求证: AG=DE;
2
1
②当点 F 在 DC 延长线上,且 CD =3CF 时,求证: AG =
DE;
③当点 F 在线段 CD 上时,求证: AG=DE+CF.
A E D
G
B C F
H
(第 24 题)
相关试卷
这是一份浙江省宁波市鄞州区2022-2023学年八年级下学期数学期末试卷,共8页。
这是一份浙江省宁波市海曙区2022-2023学年八年级下学期数学期末试卷,共2页。
这是一份浙江省宁波市北仑区2022-2023学年八年级下学期数学期末试卷,共11页。