搜索
    上传资料 赚现金
    清单04 几何图形初步(14个考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年七年级数学上学期期末考点预测(人教版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      清单04 几何图形初步(14个考点梳理+题型解读+核心素养提升+中考聚焦)(原卷版).docx
    • 解析
      清单04 几何图形初步(14个考点梳理+题型解读+核心素养提升+中考聚焦)(解析版).docx
    清单04 几何图形初步(14个考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年七年级数学上学期期末考点预测(人教版)01
    清单04 几何图形初步(14个考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年七年级数学上学期期末考点预测(人教版)02
    清单04 几何图形初步(14个考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年七年级数学上学期期末考点预测(人教版)03
    清单04 几何图形初步(14个考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年七年级数学上学期期末考点预测(人教版)01
    清单04 几何图形初步(14个考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年七年级数学上学期期末考点预测(人教版)02
    清单04 几何图形初步(14个考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年七年级数学上学期期末考点预测(人教版)03
    还剩17页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    清单04 几何图形初步(14个考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年七年级数学上学期期末考点预测(人教版)

    展开
    这是一份清单04 几何图形初步(14个考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年七年级数学上学期期末考点预测(人教版),文件包含清单04几何图形初步14个考点梳理+题型解读+核心素养提升+中考聚焦原卷版docx、清单04几何图形初步14个考点梳理+题型解读+核心素养提升+中考聚焦解析版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。


    【知识清单】
    考点一、柱、锥、球
    立体图形:有些几何图形(圆柱、圆锥、球、长方体、正方体等)各部分不在一个平面内,这样的图形叫立体图形。棱柱、棱锥是常见的立体图形。生活中常见的物体都是立体图形.
    【例1】(2022秋•甘井子区校级期末)下列四个几何体中,是棱柱的是( )
    A.B.C.D.
    【变式】(2022秋•洛江区期末)三个边长分别为a、b、c的正方形如图摆放,则阴影部分的周长( )
    A.只与a,b有关B.只与a、c有关
    C.只与b、c有关D.与a,b、c有关
    考点二. 正方体的表面展开图
    正方形展开图的知识要点:
    1. 正方体的表面展开图一共有11种可能。
    第一类:有6种。特点:是4个连成一排的正方形,其两侧各有一个正方形.简称“141型”
    第二类:有3种。特点:是有3个连成一排的正方形,其两侧分别有1个和两个相连的正方形;简称“132型”
    第三类:仅有一种。特点:是两个连成一排的正方形的两侧又各有两个连成一排的正方形;简称“222型”
    第四类:仅有1种,三个连成一排的正方形的一侧,还有3个连成一排的正方形,可简称“33型”
    注:正方体展开图中不能出现“7”字,“凹”字,“田”字形,如下图:
    2. 正方体展开图找相对面的方法:
    (1)中间隔“一”是对面:中间相隔一个正方形的两个正方形是相对面;
    (2)“Z”字两端是对面:呈“Z”字形排列的四个正方形首尾两个正方形是相对面;
    (3)间二、拐角邻面知:中间隔两个正方形的两个正方形是相邻面,呈拐角形状的三个小正方形,只有一个相邻正方形的两个正方形是相邻面。
    【例2】(2022秋•灵宝市期末)如图所示的正方体的展开图是( )
    A.B.C.D.
    【变式】(2022秋•洪山区期末)下列图形中,能够折叠成一个正方体的是( )
    A.B.
    C.D.
    考点三. 其他立体图形的展开图
    常见的几何体的展开图有圆柱、圆锥、棱柱、正方体、棱锥。特殊:球没有展开图
    ①圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面)。
    ②圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面)
    ③棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面)
    【例3】(2022秋•广阳区校级期末)如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为( )
    A.圆柱,圆锥,四棱柱,正方体
    B.四棱锥,圆锥,正方体,圆柱
    C.圆柱,圆锥,正方体,三棱锥
    D.圆柱,圆锥,三棱柱,正方体
    【变式】.(2022秋•灵宝市期末)下列四张正方形硬纸片,分别将阴影部分剪去后,再沿虚线折叠,其中可以围成一个封闭长方体包装盒的是( )
    A.B.
    C.D.
    考点四. 点、线、面、体之间的转化
    1. 几何体是由点、线 、面构成的.
    2. 线分为直线和曲线,面分为平面和曲面.
    3. 点、线、面之间的关系:
    点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.
    【例4】(2022秋•磁县期末)下列几何体中可以由平面图形绕某条直线旋转一周得到的是( )
    A.B.C.D.
    考点五、直线、射线、线段的联系与区别
    注意:表示直线和线段的两个大写字母可以交换位置.
    【例5】(2023春•东平县期末)平面上有三点A、B、C,如果AB=10,AC=7,BC=3,那么( )
    A.点C在线段AB上
    B.点C在线段AB的延长线上
    C.点C在直线AB外
    D.点C可能在直线AB上,也可能在直线AB外
    【变式】(2022秋•渌口区期末)下列几何图形与相应语言描述相符的是( )
    A.如图1所示,延长线段BA到点C
    B.如图2所示,射线CB不经过点A
    C.如图3所示,直线a和直线b相交于点A
    D.如图4所示,射线CD和线段AB没有交点
    考点六、计数问题
    1. 平面上有个点,其中任意三点不在一条直线上,则最多确定的直线条数为:.
    2. 若在线段AB上增加一点,则增加2条线段,此时线段总条数为1+2;若再增加一点,则又增加了3条线段,此时线段总条数为1+2+3;…;当线段AB上增加到n个点(即增加n-2个点)时,线段的总条数为.
    用到类似知识点问题:单循环比赛场数问题、双循环比赛场数问题、握手次数问题、多边形对角线条数问题、车站设计票价问题等.
    【例6】.如图,线段上的点数与线段的总数有如下关系:如果线段上有3个点时,线段共有3条;如果线段上有4个点时,线段共有6条;如果线段上有5个点时,线段共有10条;……
    (1)当线段上有6个点时,线段共有______条;
    (2)当线段上有个点时,线段共有多少条?(用含的代数式表示)
    【变式】已知线段MN,在MN上逐一画点(所画点与M、N不重合),当线段上有1个点时,共有3条线段,当线段上有2个点时,共有6条线段;当线段上有3个点时,共有10条线段;直接写出当线段上有20个点时,共有线段 条.
    考点七、 基本性质
    (1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短.
    细节剖析
    ①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.
    ②连接两点间的线段的长度,叫做两点间的距离.
    【例7】.(2022秋•衡东县期末)平面上有不同的三个点,经过其中任意两点画直线,一共可以画( )
    A.1条B.2条C.3条D.1条或3条
    【变式1】.(2022秋•梅里斯区期末)在平面内,过( )点可以确定一条直线.
    A.一B.两C.三D.四
    【变式2】.(2022秋•许昌期末)如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做蕴含的数学原理是( )
    A.过一点有无数条直线B.两点确定一条直线
    C.两点之间线段最短D.线段是直线的一部分
    【例8】.(2022秋•衡南县期末)如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是( )
    A.两点之间,线段最短B.两点确定一条直线
    C.两点之间,直线最短D.两点确定一条线段
    【变式】(2022秋•东洲区校级期末)如图,一只蚂蚁外出觅食,它与食物间有三条路径,从上到下依次记为①,②,③,则蚂蚁选择第②条路径的理由是( )
    A.两点确定一条直线
    B.两点之间线段最短
    C.经过一点有无数条直线
    D.两点之间线段的长度叫做两点间的距离
    【例9】.(2022秋•绥宁县期末)如图,AB=12,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度为( )
    A.4B.6C.8D.10
    【变式】.(2022秋•武陵区期末)如图,C为线段AD上一点,点B为CD的中点,且AD=8cm,BD=2cm,求AC的长.
    考点八.画一条线段等于已知线段
    (1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.
    (2)用尺规作图法:用圆规在射线AC上截取AB=a,如下图:
    【例10】.(2022秋•梁山县期末)如图,已知线段a、b、c,用直尺和圆规画图(保留画图痕迹).
    (1)画一条线段,使它等于a+b;
    (2)画一条线段,使它等于a﹣c;
    并用字母表示出所画线段.
    考点九.线段的比较与运算
    (1)线段的比较:
    比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.
    (2)线段的和与差:
    如下图,有AB+BC=AC,或AC=a+b;AD=AB-BD。
    (3)线段的中点:
    把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:
    细节剖析
    ①线段中点的等价表述:如上图,点M在线段上,且有,则点M为线段AB的中点.
    ②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,点M,N,P均为线段AB的四等分点.
    【例11】(2022秋•阳曲县期末)如图,用圆规比较两条线段的长短,其中正确的是( )
    A.A'B'>A'C'B.A'B'=A'C'C.A'B'<A'C'D.不能确定
    【例12】如图:点C为线段AB上的一点,M、N分别为AC、BC的中点,AB=40,则MN=_____.
    【变式】已知:如图,点在线段上,点是中点,.求线段长
    【例13】如图,C为线段AB上的一点,AC:CB=3:2,D、E两点分别为AC、AB的中点,若线段DE为2cm,则AB的长为多少?
    考点十.角的度量
    (1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.
    (2). 平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角.
    (3)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:
    细节剖析
    ①角的两种定义是从不同角度对角进行的定义;
    ②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示.
    (4)角度制及角度的换算
    1周角=360°,1平角=180°,1°=60′,1′=60″,以度、分、秒为单位的角的度量制,叫做角度制.
    细节剖析
    ①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.
    ②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行.
    ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一
    成60.
    (5)角的分类
    (6)画一个角等于已知角
    (1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.
    (2)借助量角器能画出给定度数的角.
    (3)用尺规作图法.
    【例14】.(2022秋•新华区校级期末)下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是( )
    A.B.
    C.D.
    【变式】.(2022秋•甘肃期末)如图所示,∠AOC=90°,点B,O,D在同一直线上,若∠1=28°,则∠2的度数为( )
    A.118°B.108°C.62°D.152°
    【例15】.(2022秋•娄星区期末)把8.32°用度、分、秒表示正确的是( )
    A.8°3′2″B.8°30′20″C.8°18′12″D.8°19′12″
    【变式】.(2022秋•雁塔区校级期末)如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=26°18',则∠2的度数是( )
    A.26°18'B.52°20'C.56°23'D.56°18'
    【例16】如图,△ABC中,用尺规作图法作∠ABD=∠C,与边AC交于点D(保留作图痕迹,不用写作法)
    【变式】如图所示,已知锐角∠AOB及一点P.
    (1)过点P作OA、OB的垂线,垂足分别是M、N;(只作图,保留作图痕迹,不写作法)
    (2)猜想∠MPN与∠AOB之间的关系,并证明.
    考点十一.角的比较与运算
    (1)角的比较方法: ①度量法;②叠合法.
    (2)角的平分线:
    从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC是∠AOB的平分线,所以∠1=∠2=∠AOB,或∠AOB=2∠1=2∠2.
    类似地,还有角的三等分线等.
    【例17】.(2022秋•渠县校级期末)如图,射线OC,OD分别在∠AOB的内部、外部,下列结论错误的是( )
    A.∠AOB<∠AODB.∠BOC<∠AOBC.∠COD>∠AODD.∠AOB>∠AOC
    【变式】.(2022秋•栾城区期末)将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起.
    (1)若∠DCE=35°,则∠ACB的度数为 ;
    (2)若∠ACB=144°42′,则∠DCE的度数为 ;
    (3)猜想∠ACB与∠DCE的大小关系,并说明理由.
    【例18】.(2022秋•达川区校级期末)如图,点O在直线AB上,OD是∠AOC的角平分线,∠COB=42°,则∠DOC的度数是( )
    A.59°B.60°C.69°D.70°
    【变式】.(2022秋•建平县期末)如图,OC平分∠AOB,若∠AOC=27°32′,则∠AOB= .
    【例19】.(2022秋•平泉市校级期末)把两块三角板按如图所示那样拼在一起,则∠ABC等于( )
    A.70°B.90°C.105°D.120°
    【变式】.(2022秋•道县期末)如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,则∠BOE的度数为( )
    A.360°﹣4αB.180°﹣4αC.αD.270°﹣3α
    考点十二.角的互余互补关系
    余角补角
    (1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.
    (2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.
    (3)结论: 同角(或等角)的余角相等;同角(或等角)的补角相等.
    细节剖析
    ①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).
    ②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.
    ③只考虑数量关系,与位置无关.
    ④“等角是相等的几个角”,而“同角是同一个角” .
    【例20】.(2022秋•灵宝市期末)已知∠1+∠2=180°,∠2+∠3=180°,则( )
    A.∠1=∠3B.∠2=∠3C.∠1=∠2D.∠1=∠2=∠3
    【变式1】.(2022秋•绵阳期末)若一个角的余角是它的补角的,则这个角的度数是( )
    A.30°B.60°C.120°D.150°
    【变式2】.(2022秋•阳西县期末)一个角的补角比这个角的余角的3倍少10°,这个角为( )
    A.20°B.30°C.40°D.50°
    考点十三. 钟面角
    钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°.
    技巧:钟面角问题一般可以看做是行程问题里的追击问题.
    【例21】.(2022秋•宜城市期末)某一时刻,时钟上显示的时间是9点30分,则此时时针与分针的夹角是( )
    A.75°B.90°C.105°D.120°
    【变式】.(2022秋•九龙坡区期末)当分针指向12,时针这时恰好与分针成60°的角,此时是( )
    A.9点钟B.10点钟
    C.4点钟或8点钟D.2点钟或10点钟
    考点十四.方位角
    以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.
    细节剖析
    (1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.
    (2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.
    (3)方位角在航行、测绘等实际生活中的应用十分广泛.
    【例22】.(2022秋•汉台区期末)如图,A地和B地都是海上观测站,A地在灯塔O的北偏东30°方向,∠AOB=100°,则B地在灯塔O的( )
    A.南偏东40°方向B.南偏东50°方向
    C.南偏西50°方向D.东偏南30°方向
    【变式】.(2022秋•和平区校级期末)如图,下列说法中错误的是( )
    A.OA方向是北偏东30°B.OB方向是北偏西15°
    C.OC方向是南偏西25°D.OD方向是东南方向
    【核心素养提升】
    1.分类讨论思想
    1.以∠AOB的顶点O为端点引射线OC,使∠AOC:∠BOC=5:4,若∠AOB=27°,则∠AOC=______.
    2.如图,点在直线上,.在中,,.先将一边与重合,然后绕点顺时针方向旋转,当与重合时停止旋转.
    (1)当在与之间,且时,则______°.
    (2)试探索:在旋转过程中,与大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;
    (3)在△ODE的旋转过程中,若,试求的大小.
    2.直观想象-运用数形结合的思想方法解决问题
    3.(1)特例感知:如图1,OC、OD是内部的两条射线,若,,则 °.
    (2)知识迁移:如图2,OC是内部的一条射线,若OM、ON分别平分和,且,则的值为 .
    (3)类比探究:如图3,OC、OD是内部的两条射线.若OM、ON分别平分和,且,求的值.
    3.数学建模
    4.平面内有n条直线(n≥2),这n条直线两两相交,最多可以得到a个交点,最少可以得到b个交点,则a+b的值是( )
    A.B.C.D.
    5.在同一平面内,两条直线相交时最多有1个交点,三条直线相交时最多有3个交点,四条直线相交时最多有6个交点,…,那么十条直线相交时最多有____个交点.
    4.数学运算-运用整体思想求角度或线段的长
    6.如图,点B在线段AC的延长线上,AC(1)若AC=8cm,CB=10cm,求线段MN的长;
    (2)若AC=a,CB=b,求线段CD的长.
    【中考热点聚焦】
    热点1.角的平分线
    1.(2023•乐山)如图,点O在直线AB上,OD是∠BOC的平分线,若∠AOC=140°,则∠BOD的度数为 .
    热点2.余角和补角
    2.(2023•北京)如图,∠AOC=∠BOD=90°,∠AOD=126°,则∠BOC的大小为( )
    A.36°B.44°C.54°D.63°
    3.(2022•甘肃)若∠A=40°,则∠A的余角的大小是( )
    A.50°B.60°C.140°D.160°
    4.(2022•陕西)若∠A=48°,则∠A的补角的度数为( )
    A.42°B.52°C.132°D.142°
    热点3.立体图形的展开图
    5.(2023•威海)如图是一正方体的表面展开图.将其折叠成正方体后,与顶点K距离最远的顶点是( )
    A.A点B.B点C.C点D.D点
    6.(2023•扬州)下列图形是棱锥侧面展开图的是( )
    A.B.
    C.D.
    7.(2023•陕西)如图,沿线段OA将该圆锥的侧面剪开并展平,得到的圆锥的侧面展开图是( )
    A.三角形B.正方形C.扇形D.圆
    8.(2023•达州)下列图形中,是长方体表面展开图的是( )
    A.B.
    C.D.
    ∠β
    锐角
    直角
    钝角
    平角
    周角
    范围
    0<∠β<90°
    ∠β=90°
    90°<∠β<180°
    ∠β=180°
    ∠β=360°
    相关试卷

    清单04 几何图形初步(14个考点梳理+题型解读+核心素养提升+中考聚焦)-七年级上学期数学期末考点大串讲(人教版): 这是一份清单04 几何图形初步(14个考点梳理+题型解读+核心素养提升+中考聚焦)-七年级上学期数学期末考点大串讲(人教版),文件包含清单04几何图形初步14个考点梳理+题型解读+核心素养提升+中考聚焦原卷版docx、清单04几何图形初步14个考点梳理+题型解读+核心素养提升+中考聚焦解析版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。

    清单04 圆(20个考点梳理+题型解读+核心素养提升+中考热点聚焦)-九年级上学期数学期末考点大串讲(人教版): 这是一份清单04 圆(20个考点梳理+题型解读+核心素养提升+中考热点聚焦)-九年级上学期数学期末考点大串讲(人教版),文件包含清单04圆20个考点梳理+题型解读+核心素养提升+中考热点聚焦原卷版docx、清单04圆20个考点梳理+题型解读+核心素养提升+中考热点聚焦解析版docx等2份试卷配套教学资源,其中试卷共82页, 欢迎下载使用。

    清单03 旋转(12个考点梳理+题型解读+核心素养提升+中考聚焦)-九年级上学期数学期末考点大串讲(人教版): 这是一份清单03 旋转(12个考点梳理+题型解读+核心素养提升+中考聚焦)-九年级上学期数学期末考点大串讲(人教版),文件包含清单03旋转12个考点梳理+题型解读+核心素养提升+中考聚焦原卷版docx、清单03旋转12个考点梳理+题型解读+核心素养提升+中考聚焦解析版docx等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        清单04 几何图形初步(14个考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年七年级数学上学期期末考点预测(人教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map