终身会员
搜索
    上传资料 赚现金
    清单06 反比例函数(6大考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年九年级数学上学期期末考点预测(人教版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      清单06 反比例函数(6大考点梳理+题型解读+核心素养提升+中考聚焦)(原卷版).docx
    • 解析
      清单06 反比例函数(6大考点梳理+题型解读+核心素养提升+中考聚焦)(解析版).docx
    清单06 反比例函数(6大考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年九年级数学上学期期末考点预测(人教版)01
    清单06 反比例函数(6大考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年九年级数学上学期期末考点预测(人教版)02
    清单06 反比例函数(6大考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年九年级数学上学期期末考点预测(人教版)03
    清单06 反比例函数(6大考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年九年级数学上学期期末考点预测(人教版)01
    清单06 反比例函数(6大考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年九年级数学上学期期末考点预测(人教版)02
    清单06 反比例函数(6大考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年九年级数学上学期期末考点预测(人教版)03
    还剩20页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    清单06 反比例函数(6大考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年九年级数学上学期期末考点预测(人教版)

    展开
    这是一份清单06 反比例函数(6大考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年九年级数学上学期期末考点预测(人教版),文件包含清单06反比例函数6大考点梳理+题型解读+核心素养提升+中考聚焦原卷版docx、清单06反比例函数6大考点梳理+题型解读+核心素养提升+中考聚焦解析版docx等2份试卷配套教学资源,其中试卷共73页, 欢迎下载使用。


    【知识清单】
    知识点一、反比例函数的定义
    如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例.即,或表示为,其中是不等于零的常数.
    一般地,形如 (为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.
    特别说明:(1)在中,自变量是分式的分母,当时,分式无意义,所以自变量的取值范围是,函数的取值范围是.故函数图象与轴、轴无交点.
    (2) ()可以写成()的形式,自变量的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.
    (3) ()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数,从而得到反比例函数的解析式.
    【例1】下列选项中的函数,关于成反比例函数的是( )
    A.B.C.D.
    【变式】已知函数是反比例函数,则的值为__________.
    知识点二、确定反比例函数的关系式
    确定反比例函数关系式的方法仍是待定系数法,由于反比例函数中,只有一个待定系数,因此只需要知道一对的对应值或图象上的一个点的坐标,即可求出的值,从而确定其解析式.
    用待定系数法求反比例函数关系式的一般步骤是:
    (1)设所求的反比例函数为: ();
    (2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;
    (3)解方程求出待定系数的值;
    (4)把求得的值代回所设的函数关系式 中.
    【例2】已知y=y1+y2,y1与x+1成正比例,y2与x+1成反比例,当x=0时,y=﹣5;当x=2时,y=﹣7.(1)求y与x的函数关系式;(2)当x=5时,求y的值.
    【变式】已知:反比例函数的图象过点A(-3,-2);
    (1)求反比例函数的解析式;(2)若点B(1,m)在该函数图象上,求m的值.
    知识点三、反比例函数的图象和性质
    1、 反比例函数的图象特征:
    反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与轴、轴相交,只是无限靠近两坐标轴.
    特别说明:(1)若点()在反比例函数的图象上,则点()也在此图象上,所以反比例函数的图象关于原点对称;
    (2)在反比例函数(为常数,) 中,由于,所以两个分支都无限接近但永远不能达到轴和轴.
    2、画反比例函数的图象的基本步骤:
    (1)列表:自变量的取值应以0为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;
    (2)描点:描出一侧的点后,另一侧可根据中心对称去描点;
    (3)连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;
    (4)反比例函数图象的分布是由的符号决定的:当时,两支曲线分别位于第一、三象限内,当时,两支曲线分别位于第二、四象限内.
    3、反比例函数的性质
    (1)如图1,当时,双曲线的两个分支分别位于第一、三象限,在每个象限内,值随值的增大而减小;
    (2)如图2,当时,双曲线的两个分支分别位于第二、四象限,在每个象限内,值随值的增大而增大;
    特别说明:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出的符号.
    【例3】关于反比例函数y=﹣,下列说法不正确的是( )
    A.函数图象分别位于第二、四象限 B.函数图象关于原点成中心对称
    C.函数图象经过点(﹣6,﹣2) D.当x<0时,y随x的增大而增大
    【变式1】在双曲线的任一分支上,都随的增大而增大,则下列说法错误的是( )
    A.的值有可能为B.图象位于第二、四象限
    C.若图象过点,也必过点D.图象与轴只有一个交点
    【变式2】若点是反比例函数图象上一点,则下列说法正确的是( )
    A.图象位于二、四象限 B.当时,随的增大而减小
    C.点在函数图象上 D.当时,
    【变式3】已知与y=x-3相交于点,则的值为__________.
    【变式4】一次函数y=ax+b与反比例函数,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是( )
    A.B.C.D.
    知识点四、反比例函数()中的比例系数的几何意义
    1.反比例函数图象中有关图形的面积
    2.涉及三角形的面积型
    当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.
    1)正比例函数与一次函数所围成的三角形面积.如图①,S△ABC=2S△ACO=|k|;
    2)如图②,已知一次函数与反比例函数交于A、B两点,且一次函数与x轴交于点C,则S△AOB=S△AOC+S△BOC=+=;
    3)如图③,已知反比例函数的图象上的两点,其坐标分别为,,C为AB延长线与x轴的交点,则S△AOB=S△AOC–S△BOC=–=.
    【例4】如图,矩形的中心为直角坐标系的原点,各边分别与坐标轴平行,其中一边交轴于点,交反比例函数图像于点,且点是的中点,已知图中阴影部分的面积为,则该反比例函数的表达式是( )
    A.B.C.D.
    【变式1】如图,点 P 是反比例函数 y =6/x的图象上的任意一点,过点 P分别作两坐标轴的垂线,与坐标轴构成矩形 OAPB,点 D 是矩形OAPB 内任意一点,连接 DA、DB、DP、DO,则图中阴影 部分的面积
    A.1B.2C.3D.4
    【变式2】如图,点在双曲线上,点在双曲线上,点、在轴上,若四边形是矩形,则它的面积为( )
    A.2B.3C.4D.5
    【变式3】如图,在平面直角坐标系中,点为坐标原点,点在直线上,且点的横坐标是2,过点分别向轴、轴作垂线,交反比例函数的图象于点、点,则四边形的面积是( )
    A.4B.C.D.5
    【变式4】如图,直线交双曲线于、,交轴于点为线段的中点,过点作轴于,连结.若,则的值为__________.
    【变式5】如图,在反比例函数的图象(x>0)上,有点P1,P2,P3,P4,…,点P1横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1,P2,P3,P4,…分别作x轴,y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,…则S1+S2+S3+…+Sn=_____.
    知识点五、利用反比例函数解决实际问题
    基本思路:建立函数模型,即在实际问题中求得函数解析式,然后应用函数的图象和性质等知识解决问题.
    一般步骤如下:(1)审清题意,根据常量、变量之间的关系,设出函数解析式,待定的系
    数用字母表示.
    (2)由题目中的已知条件,列出方程,求出待定系数.
    (3)写出函数解析式,并注意解析式中变量的取值范围.
    (4)利用函数解析式、函数的图象和性质等去解决问题.
    【例5】小芳从家骑自行车去学校,所需时间()与骑车速度()之间的反比例函数关系如图.
    (1)小芳家与学校之间的距离是多少?(2)写出与的函数表达式;(3)若小芳点分从家出发,预计到校时间不超过点分,请你用函数的性质说明小芳的骑车速度至少为多少?
    【变式】学校的学生专用智能饮水机里水的温度(℃)与时间(分)之间的函数关系如图所示,当水的温度为20℃时,饮水机自动开始加热,当加热到100℃时自动停止加热(线段),随后水温开始下降,当水温降至20℃时(为双曲线的一部分),饮水机又自动开始加热……根据图中提供的信息,解答下列问题:(1)分别求出饮水机里水的温度上升和下降阶段与之间的函数表达式;
    (2)下课时,同学们纷纷用水杯去盛水喝.此时,饮水机里水的温度刚好达到100℃.据了解,饮水机1分钟可以满足12位同学的盛水要求,学生喝水的最佳温度在30℃~45℃,请问在大课间30分钟时间里有多少位同学可以盛到最佳温度的水?
    知识点六、反比例函数在其他学科中的应用
    当圆柱体的体积一定时,圆柱的底面积是高的反比例函数;
    当工程总量一定时,做工时间是做工速度的反比例函数;
    在使用杠杆时,如果阻力和阻力臂不变,则动力是动力臂的反比例函数;
    电压一定,输出功率是电路中电阻的反比例函数.
    【例6】.(2023•小店区校级模拟)杠杆原理也称为“杠杆平衡条件”,要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等,即F1×L1=F2×L2.如图,铁架台左侧钩码的个数与位置都不变,在保证杠杆水平平衡的条件下,右侧力F与力臂L满足的函数关系是( )
    A.正比例函数关系B.一次函数关系
    C.反比例函数关系D.二次函数关系
    【变式1】.(2023•桥西区二模)厨师将一定质量的面团做成拉面时,面条的总长度y(m)是面条横截面面积S(mm2)的反比例函数,其图象经过A(4,30),B(2,b)两点(如图),则下列说法错误的是( )
    A.y与S之间满足的函数关系式为
    B.点B的坐标为(2,60)
    C.若面条的总长度为100m,则面条的横截面面积为1.2mm2
    D.若面条的横截面面积不超过0.8mm2,则面条的总长度不超过150m
    【变式2】.(2023•恩施市模拟)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数,其图象如图所示.当气球内的气压大于120kPa时,气球将爆炸.为了安全起见,气球的体积应( )
    A.不小于B.不小于
    C.小于D.小于
    【变式3】.(2023•新华区校级模拟)如图,曲线表示温度T(℃)与时间t(h)之间的函数关系,它是一个反比例函数的图象的一支.当温度T≤2℃时,时间t应( )
    A.不小于h B.不大于h C.不小于h D.不大于h
    【变式4】.(2023•东海县一模)某个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图所示的是该台灯的电流I(A)与电阻R(Ω)的关系图象,该图象经过点P(880,0.25).根据图象可知,下列说法正确的是( )
    A.当I<0.25时,R<880
    B.I与R的函数关系式是
    C.当R>1000时,I>0.22
    D.当880<R<1000时,I的取值范围是0.22<I<0.25
    【变式5】.(2023•大同模拟)远视眼镜的镜片是凸透镜,镜片的度数y(度)(y>0)是关于镜片焦距x(m)(x>0)的反比例函数,当y=200时,x=0.5.下列说法中,错误的是( )
    A.y与x的函数关系式为y=(x>0)
    B.y随x的增大而减小
    C.当远视眼镜的镜片焦距是0.2时,该镜片是500度
    D.若一副远视眼镜的度数不大于400度,则焦距不大于0.25m
    【变式6】.(2023秋•庐阳区校级期中)某蓄电池的电压为48V,使用此蓄电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为.当R=6Ω时,I的值为 A.
    【变式7】.(2023秋•新城区校级期中)小明要把一篇文章录入电脑,完成录入的时间y(分)与录入文字的速度x(字/分)之间的函数关系如图所示.
    (1)求y与x之间的函数关系式;
    (2)小明在19:20开始录入,要求完成录入时不超过19:40,小明每分钟至少应录入多少个字?
    【核心素养提升】
    数学建模-构建反比例函数模型解决实际问题
    1.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:
    观察表中数据,发现可以用反比例函数刻画这种海产品每天的销售量(千克)与销售价格(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量(千克)与销售价格(元/千克)之间都满足这一关系.
    (1)写出这个反比例函数的解析式;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?
    (3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?
    数学建模-构建方程(组)模型求函数图象交点坐标
    2.如图,点在双曲线上.(1)求双曲线的解析式;(2)若矩形的顶点在双曲线上,顶点分别在轴,轴的正半轴上,且,求点的坐标.
    数形结合思想
    3.如图,一次函数与反比例函数的图象交于A(2,1),B(-1,)两点.求反比例函数和一次函数的解析式;
    分类讨论思想
    4.如图,函数的图象过点和两点
    (1)求和的值;(2)将直线沿轴向左移动得直线,交轴于点,交轴于点,交于点,若,求直线的解析式;(3)在(2)的条件下,第二象限内是否存在点,使得为等腰直角三角形,若存在,请直接写出点的坐标;若不存在,请说明理由.
    5.如图,正方形OABC的边OA,OC分别在x轴y轴上,顶点B在第一象限,AB=6,点E,F分别在AB和射线OB上运动(E,F不与正方形的顶点重合),,设BE=t。(1)当时,则AE=____________;BF=________________;(2)当点F在线段OB上运动时,若的面积为,求t的值(3)在整个运动的过程中①平面上是否存在点P,使得以P,O,E,F为顶点的四边形是菱形?若存在,求出t的值;若不存在,请说明理由;②若函数( ,a为常数)的图像同时经过E,F,直接写出a的值.
    【中考聚焦】
    热点1.反比例函数的解析式、图象和性质
    1.(2023•呼和浩特)在同一直角坐标系中,函数y=﹣kx+k与的大致图象可能为( )
    A.B.
    C.D.
    2.(2023•武汉)关于反比例函数,下列结论正确的是( )
    A.图象位于第二、四象限
    B.图象与坐标轴有公共点
    C.图象所在的每一个象限内,y随x的增大而减小
    D.图象经过点(a,a+2),则a=1
    3.(2023•甘孜州)若反比例函数的图象位于第一、三象限,则k的取值范围是 .
    4.(2023•青岛)反比例函数y=的图象经过点A(m,),则反比例函数的表达式为 .
    5.(2023•陕西)如图,在矩形OABC和正方形CDEF中,点A在y轴正半轴上,点C,F均在x轴正半轴上,点D在边BC上,BC=2CD,AB=3.若点B,E在同一个反比例函数的图象上,则这个反比例函数的表达式是 .
    6.(2023•绵阳)如图,过原点O的直线与反比例函数(k≠0)的图象交于A(1,2),B两点,一次函数y2=mx+b(m≠0)的图象过点A与反比例函数交于另一点C(2,n).
    (1)求反比例函数的解析式;当y1>y2时,根据图象直接写出x的取值范围;
    (2)在y轴上是否存在点M,使得△COM为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
    7.(2023•雅安)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,点A,C在坐标轴上,反比例函数y=(x>0)的图象经过点B.
    (1)求反比例函数的表达式;
    (2)点D在反比例函数图象上,且横坐标大于2,S△OBD=3,求直线BD的函数表达式.
    8.(2023•湘潭)如图,点A的坐标是(﹣3,0),点B的坐标是(0,4),点C为OB中点.将△ABC绕着点B逆时针旋转90°得到△A′BC′.
    (1)反比例函数y=的图象经过点C′,求该反比例函数的表达式;
    (2)一次函数图象经过A、A′两点,求该一次函数的表达式.
    热点2.反比例函数中比例系数K的几何意义
    9.(2023•福建)如图,正方形四个顶点分别位于两个反比例函数y=和y=的图象的四个分支上,则实数n的值为( )
    A.﹣3B.﹣C.D.3
    10.(2022•十堰)如图,正方形ABCD的顶点分别在反比例函数y=(k1>0)和y=(k2>0)的图象上.若BD∥y轴,点D的横坐标为3,则k1+k2=( )
    A.36B.18C.12D.9
    热点3.反比例函数的综合应用
    11.(2023•大庆)一次函数y=﹣x+m与反比例函数y=的图象交于A,B两点,点A的坐标为(1,2).
    (1)求一次函数和反比例函数的表达式;
    (2)求△OAB的面积;
    (3)过动点T(t,0)作x轴的垂线l,l与一次函数y=﹣x+m和反比例函数y=的图象分别交于M,N两点,当M在N的上方时,请直接写出t的取值范围.
    12.(2023•苏州)如图,一次函数y=2x的图象与反比例函数y=(x>0)的图象交于点A(4,n).将点A沿x轴正方向平移m个单位长度得到点B,D为x轴正半轴上的点,点B的横坐标大于点D的横坐标,连接BD,BD的中点C在反比例函数y=(x>0)的图象上.
    (1)求n,k的值;
    (2)当m为何值时,AB•OD的值最大?最大值是多少?
    13.(2023•甘孜州)如图,在平面直角坐标系xOy中,一次函数与反比例函数的图象相交于A(3,m),B两点.
    (1)求反比例函数的解析式;
    (2)若点C为x轴正半轴上一点,且满足AC⊥BC,求点C的坐标.
    热点4.反比例函数在实际问题中的应用
    14.(2023•怀化)已知压力F(N)、压强P(Pa)与受力面积S(m2)之间有如下关系式:F=PS.当F为定值时,如图中大致表示压强P与受力面积S之间函数关系的是( )
    A.B.
    C.D.
    15.(2023•荆州)已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系(I=).下列反映电流I与电阻R之间函数关系的图象大致是( )
    A.B.
    C.D.
    16.(2023•扬州)某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(Pa)是气球体积V(m3)的反比例函数,且当V=3m3时,p=8000Pa.当气球内的气体压强大于40000Pa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于 m3.
    17.(2023•台州)科学课上,同学用自制密度计测量液体的密度.密度计悬浮在不同的液体中时,浸在液体中的高度h(单位:cm)是液体的密度ρ(单位:g/cm3)的反比例函数,当密度计悬浮在密度为1g/cm3的水中时,h=20cm.
    (1)求h关于ρ的函数解析式;
    (2)当密度计悬浮在另一种液体中时,h=25cm,求该液体的密度ρ.
    18.(2023•宁夏)给某气球充满一定质量的气体,在温度不变时,气球内气体的气压p(KPa)是气体体积V(m3)的反比例函数,其图象如图所示.
    (1)当气球内的气压超过150KPa时,气球会爆炸,若将气球近似看成一个球体,试估计气球的半径至少为多少时气球不会爆炸(球体的体积公式V=πr3,π取3);
    (2)请你利用p与V的关系试解释为什么超载的车辆容易爆胎.
    19.(2023•河南)小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数图象上的点 和点B为顶点,分别作菱形AOCD和菱形OBEF,点D,E在x轴上,以点O为圆心,OA长为半径作,连接BF.
    (1)求k的值;
    (2)求扇形AOC的半径及圆心角的度数;
    (3)请直接写出图中阴影部分面积之和.
    20.(2023•达州)【背景】在一次物理实验中,小冉同学用一固定电压为12V的蓄电池,通过调节滑动变阻器来改变电流大小,完成控制灯泡L(灯丝的阻值RL=2Ω) 亮度的实验(如图),已知串联电路中,电流与电阻R、RL之间关系为 I=,通过实验得出如下数据:
    (1)a= ,b= ;
    (2)【探究】根据以上实验,构建出函数y=(x≥0),结合表格信息,探究函数y=(x≥0)的图象与性质.
    ①在平面直角坐标系中画出对应函数y=(x≥0)的图象;
    ②随着自变量x的不断增大,函数值y的变化趋势是 .
    (3)【拓展】结合(2)中函数图象分析,当x≥0时,≥﹣x+6的解集为 .
    21.(2022•台州)如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高y(单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数,当x=6时,y=2.
    (1)求y关于x的函数解析式.
    (2)若火焰的像高为3cm,求小孔到蜡烛的距离.
    第1天
    第2天
    第3天
    第4天
    第5天
    第6天
    第7天
    第8天
    售价(元/千克)
    400
    300
    250
    240
    200
    150
    125
    120
    销售量(千克)
    30
    40
    48
    50
    60
    80
    96
    100
    R/Ω

    1
    a
    3
    4
    6

    I/A

    4
    3
    2.4
    2
    b

    相关试卷

    清单05 概率初步(9个考点梳理+题型解读+核心素养提升+中考热点聚焦)-九年级上学期数学期末考点大串讲(人教版): 这是一份清单05 概率初步(9个考点梳理+题型解读+核心素养提升+中考热点聚焦)-九年级上学期数学期末考点大串讲(人教版),文件包含清单05概率初步9个考点梳理+题型解读+核心素养提升+中考热点聚焦原卷版docx、清单05概率初步9个考点梳理+题型解读+核心素养提升+中考热点聚焦解析版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。

    清单04 圆(20个考点梳理+题型解读+核心素养提升+中考热点聚焦)-九年级上学期数学期末考点大串讲(人教版): 这是一份清单04 圆(20个考点梳理+题型解读+核心素养提升+中考热点聚焦)-九年级上学期数学期末考点大串讲(人教版),文件包含清单04圆20个考点梳理+题型解读+核心素养提升+中考热点聚焦原卷版docx、清单04圆20个考点梳理+题型解读+核心素养提升+中考热点聚焦解析版docx等2份试卷配套教学资源,其中试卷共82页, 欢迎下载使用。

    清单03 旋转(12个考点梳理+题型解读+核心素养提升+中考聚焦)-九年级上学期数学期末考点大串讲(人教版): 这是一份清单03 旋转(12个考点梳理+题型解读+核心素养提升+中考聚焦)-九年级上学期数学期末考点大串讲(人教版),文件包含清单03旋转12个考点梳理+题型解读+核心素养提升+中考聚焦原卷版docx、清单03旋转12个考点梳理+题型解读+核心素养提升+中考聚焦解析版docx等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        清单06 反比例函数(6大考点梳理+题型解读+核心素养提升+中考聚焦)-2023-2024学年九年级数学上学期期末考点预测(人教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map