|试卷下载
终身会员
搜索
    上传资料 赚现金
    广东省深圳市深圳外国语学校学校2023-2024学年上学期九年级第3次月考数学试卷(12月)
    立即下载
    加入资料篮
    广东省深圳市深圳外国语学校学校2023-2024学年上学期九年级第3次月考数学试卷(12月)01
    广东省深圳市深圳外国语学校学校2023-2024学年上学期九年级第3次月考数学试卷(12月)02
    广东省深圳市深圳外国语学校学校2023-2024学年上学期九年级第3次月考数学试卷(12月)03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省深圳市深圳外国语学校学校2023-2024学年上学期九年级第3次月考数学试卷(12月)

    展开
    这是一份广东省深圳市深圳外国语学校学校2023-2024学年上学期九年级第3次月考数学试卷(12月),共22页。试卷主要包含了下列说法正确的是,已知二次函数y=ax2﹣2x+等内容,欢迎下载使用。

    一.选择题(每题3分,共30分)
    1.一元二次方程x2+3x=0的解是( )
    A.x=﹣3 B.x1=0,x2=3 C.x1=0,x2=﹣3 D.x=3
    2.下列函数中,y的值随x值的增大而减小的是( )
    A.y=x2+1B.y=﹣x2+1C.y=2x+1D.y=﹣2x+1
    3.下列说法正确的是( )
    A.经过三点可以作一个圆
    B.三角形的外心到这个三角形的三边距离相等
    C.同圆或等圆中,等弧所对的圆心角相等
    D.相等的圆心角所对的弧相等
    4.在△ABC中,∠A,∠B都是锐角,且sinA=,csB=,则△ABC的形状是( )
    A.直角三角形B.钝角三角形
    C.锐角三角形D.不能确定
    5.已知⊙O的半径为10cm,点P到圆心O的距离为11cm,则点P和⊙O的位置关系是( )
    A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定
    6.在平面直角坐标系中,将抛物线y=x2平移,可以得到抛物线y=x2+2x+1,下列平移的叙述正确的是( )
    A.向上平移1个单位长度
    B.向下平移1个单位长度
    C.向左平移1个单位长度
    D.向右平移1个单位长度
    7.如图,有一个半径为2的圆形时钟,其中每个相邻刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )
    A.π﹣B.π﹣C.π﹣2D.π﹣
    8.已知二次函数y=ax2﹣2x+(a为常数,且a>0),下列结论:①函数图象一定经过第一、二、四象限;②函数图象一定不经过第三象限;③当x<0时,y随x的增大而减小;④当x>0时,y随x的增大而增大.其中所有正确结论的序号是( )
    A.①②B.②③C.②D.③④
    9.如图,在平面直角坐标系xOy中,A,B两点同时从原点O出发,点A以每秒2个单位长的速度沿x轴的正方向运动,点B以每秒1个单位长的速度沿y轴的正方向运动,设运动时间为t秒,以AB为直径作圆,圆心为点P.在运动的过程中有如下5个结论:①∠ABO的大小始终不变;②⊙P始终经过原点O;③半径AP的长是时间t的一次函数;④圆心P的运动轨迹是一条抛物线;⑤AB始终平行于直线.其中正确的有( )
    A.①②③④B.①②⑤C.②③⑤D.①②③⑤
    10.如图,AB是半圆O的直径,点C,D在半圆上,,连接OC,CA,OD,过点B作EB⊥AB,交OD的延长线于点E.设△OAC的面积为S1,△OBE的面积为S2,若,则tan∠ACO的值为( )
    A.B.C.D.
    二.填空题(每题3分,共15分)
    11.二次函数y=﹣(x﹣6)2+8的顶点坐标是 .
    12.如图,一名学生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=﹣(x﹣10)(x+4),则铅球推出的距离OA= m.
    13.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上,顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数为2cm,若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数是 cm(结果精确到0.1cm,参考数据sin37°≈0.60,cs37°≈0.80,tan37°≈0.75).
    14.如图,在⊙O中,直径AB与弦CD交于点E.=2,连接AD,过点B的切线与AD的延长线交于点F.若∠AFB=68°,则∠DEB= °.
    15.如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为 .
    三.解答题(共55分)
    16.(5分)计算:|﹣|﹣(4﹣π)0﹣2sin60°+()﹣1.
    17.(7分)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,B为上一点,OB⊥AC于D.若AC=300m,BD=150m,求公路的转弯处的长.(结果保留π)
    18.(7分)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,BE,CD,GF为长度固定的支架,支架在A,D,G处与立柱AH连接(AH垂直于MN,垂足为H),在B,C处与篮板连接(BC所在直线垂直于MN),EF是可以调节长度的伸缩臂(旋转点F处的螺栓改变EF的长度,使得支架BE绕点A旋转,从而改变四边形ABCD的形状,以此调节篮板的高度).已知AD=BC,DH=208cm,测得∠GAE=60°时,点C离地面的高度为288cm.调节伸缩臂EF,将∠GAE由60°调节为54°,判断点C离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin54°≈0.8,cs54°≈0.6)
    19.(8分)用各种盛水容器可以制作精致的家用流水景观(如图1).
    科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系式为s2=4h(H﹣h).
    应用思考:现用高度为20cm的圆柱体塑料水瓶做相关研究,水瓶直立地面,通过连续注水保证它始终盛满水,在离水面竖直距离hcm处开一个小孔.
    (1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?
    (2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;
    (3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求垫高的高度及小孔离水面的竖直距离.
    20.(8分)如图,AB为⊙O的弦,OC⊥OA交AB于点P,交过点B的直线于点C,且CB=CP.
    (1)试判断直线BC与⊙O的位置关系,并说明理由;
    (2)若sinA=,OA=8,求CB的长.
    21.(8分)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?
    【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;
    【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;
    【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.
    (友情提醒:以上作图均不写作法,但需保留作图痕迹)
    22.(12分)已知:A、B为圆上两定点,点C在该圆上,∠C为所对的圆周角.
    知识回顾
    (1)如图①,⊙O中,B、C位于直线AO异侧,∠AOB+∠C=135°.
    ①求∠C的度数;
    ②若⊙O的半径为5,AC=8,求BC的长;
    逆向思考
    (2)如图②,若P为圆内一点,且∠APB<120°,PA=PB,∠APB=2∠C.求证:P为该圆的圆心;
    拓展应用
    (3)如图③,在(2)的条件下,若∠APB=90°,点C在⊙P位于直线AP上方部分的圆弧上运动.点D在⊙P上,满足CD=CB﹣CA的所有点D中,必有一个点的位置始终不变.请证明.
    参考答案与试题解析
    一.选择题(共10小题)
    1.一元二次方程x2+3x=0的解是( )
    A.x=﹣3B.x1=0,x2=3
    C.x1=0,x2=﹣3D.x=3
    【解答】解:x2+3x=0,
    x(x+3)=0,
    x=0,x+3=0,
    x1=0,x2=﹣3,
    故选:C.
    2.下列函数中,y的值随x值的增大而减小的是( )
    A.y=x2+1B.y=﹣x2+1C.y=2x+1D.y=﹣2x+1
    【解答】解:选项A中,函数y=x2+1,x<0时,y随x的增大而减小;故A不符合题意;
    选项B中,函数y=﹣x2+1,x>0时,y随x的增大而减小;故B不符合题意;
    选项C中,函数y=2x+1,y随x的增大而增大;故C不符合题意;
    选项D中,函数y=﹣2x+1,y随x的增大而减小.故D符合题意;
    故选:D.
    3.下列说法正确的是( )
    A.经过三点可以作一个圆
    B.三角形的外心到这个三角形的三边距离相等
    C.同圆或等圆中,等弧所对的圆心角相等
    D.相等的圆心角所对的弧相等
    【解答】解:A、经过不在同一条直线上的三点可确定一个圆,故A错误;B、三角形的外心到这个三角形的三个顶点的距离相等,故B错误;
    C、同圆或等圆中,等弧所对的圆心角相等,故C正确;D、同圆或等圆中,相等的圆心角所对的弧相等,故D错误.故选:C.
    4.在△ABC中,∠A,∠B都是锐角,且sinA=,csB=,则△ABC的形状是( )
    A.直角三角形B.钝角三角形
    C.锐角三角形D.不能确定
    【解答】解:∵csB=,
    ∴∠B=30°,
    ∵sinA=,
    ∴∠A=30°,
    ∵∠A+∠B+∠C=180°,
    ∴∠C=180°﹣30°﹣30°=120°,
    ∴△ABC是钝角三角形,
    故选:B.
    5.已知⊙O的半径为10cm,点P到圆心O的距离为12cm,则点P和⊙O的位置关系是( )
    A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定
    【解答】解:∵⊙O的半径r=10cm,点P到圆心O的距离OP=12cm,
    ∴OP>r,
    ∴点P在⊙O外,
    故选:C.
    6.在平面直角坐标系中,将抛物线y=x2平移,可以得到抛物线y=x2+2x+1,下列平移的叙述正确的是( )
    A.向上平移1个单位长度
    B.向下平移1个单位长度
    C.向左平移1个单位长度
    D.向右平移1个单位长度
    【解答】解:∵y=x2+2x+1=(x+1)2,
    ∴平移后抛物线的顶点为(﹣1,0),
    抛物线y=x2的顶点为(0,0),
    ∴点(0,0)向左平移1个单位得点(﹣1,0),
    ∴抛物线y=x2向左平移1个单位可得抛物线y=x2+2x+1,
    故选:C.
    7.如图,有一个半径为2的圆形时钟,其中每个相邻刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )
    A.π﹣B.π﹣C.π﹣2D.π﹣
    【解答】解:连接OA、OB,过点O作OC⊥AB,
    由题意可知:∠AOB=60°,
    ∵OA=OB,
    ∴△AOB为等边三角形,
    ∴AB=AO=BO=2
    ∴S扇形AOB==π,
    ∵OC⊥AB,
    ∴∠OCA=90°,AC=1,
    ∴OC=,
    ∴S△AOB==,
    ∴阴影部分的面积为:π﹣;
    故选:B.
    8.已知二次函数y=ax2﹣2x+(a为常数,且a>0),下列结论:①函数图象一定经过第一、二、四象限;②函数图象一定不经过第三象限;③当x<0时,y随x的增大而减小;④当x>0时,y随x的增大而增大.其中所有正确结论的序号是( )
    A.①②B.②③C.②D.③④
    【解答】解:∵a>0时,抛物线开口向上,
    ∴对称轴为直线x==>0,
    当x<0时,y随x的增大而减小,
    当x>时,y随x的增大而增大,
    ∴函数图象一定不经过第三象限,函数图象可能经过第一、二、四象限.
    故选:B.
    9.如图,在平面直角坐标系xOy中,A,B两点同时从原点O出发,点A以每秒2个单位长的速度沿x轴的正方向运动,点B以每秒1个单位长的速度沿y轴的正方向运动,设运动时间为t秒,以AB为直径作圆,圆心为点P.在运动的过程中有如下5个结论:
    ①∠ABO的大小始终不变;
    ②⊙P始终经过原点O;
    ③半径AP的长是时间t的一次函数;
    ④圆心P的运动轨迹是一条抛物线;
    ⑤AB始终平行于直线.
    其中正确的有( )
    A.①②③④B.①②⑤C.②③⑤D.①②③⑤
    【解答】解:①由题意得:OA=2t,OB=t,
    则tan∠ABO=,
    ∴∠ABO的大小始终不变,正确;
    ②∵AB是圆P的直径,
    则AB所对的圆周角为90°,即∠AOB=90°,
    ∴⊙P始终经过原点O,正确;
    ③由点A、B的坐标,根据中点坐标公式得:点P(t,t),
    则AP==t,
    即AP的长度是时间t的一次函数,正确;
    ④由③知,点P(t,t),
    则点P在直线y=x上,故④错误;
    ⑤设直线AB的表达式为:y=kx+b,
    则,解得:,
    故直线AB的表达式为:y=﹣x+t,
    ∵AB始终平行于直线,正确,
    故选:D.
    10.如图,AB是半圆O的直径,点C,D在半圆上,,连接OC,CA,OD,过点B作EB⊥AB,交OD的延长线于点E.设△OAC的面积为S1,△OBE的面积为S2,若,则tan∠ACO的值为( )
    A.B.C.D.
    【解答】解:如图,过C作CH⊥AO于H,
    ∵,
    ∴∠COD=∠BOE=∠CAO,
    ∵,即,
    ∴,
    ∵∠A=∠BOE,
    ∴tan∠A=tan∠BOE,
    ∴,即,
    设AH=2m,则BO=3m=AO=CO,
    ∴OH=3m﹣2m=m,
    ∴CH=,
    ∴tan∠A==,
    ∵OA=OC,
    ∴∠A=∠ACO,
    ∴tan∠ACO=;
    故选A.
    二.填空题(共5小题)
    11.二次函数y=﹣(x﹣6)2+8的顶点坐标是 (6,8) .
    【解答】解:二次函数y=﹣(x﹣6)2+8的图象的顶点坐标是(6,8).
    故答案为:(6,8).
    12.如图,一名学生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=﹣(x﹣10)(x+4),则铅球推出的距离OA= 10 m.
    【解答】解:令y=0,则﹣(x﹣10)(x+4)=0,
    解得:x=10或x=﹣4(不合题意,舍去),
    ∴A(10,0),
    ∴OA=10m.
    故答案为:10.
    13.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上,顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数为2cm,若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数是 2.7 cm(结果精确到0.1cm,参考数据sin37°≈0.60,cs37°≈0.80,tan37°≈0.75).
    【解答】解:如图,过点B作BD⊥OA于D,过点C作CE⊥OA于E,
    在△BOD中,∠BDO=90°,∠DOB=45°,
    ∴CE=BD=2cm,
    在△OCE中,∠COE=37°,∠CEO=90°,
    ∴tan37°=,
    ∴OE=2.7cm,
    即OC与尺上沿的交点C在尺上的读数是2.7cm.
    故答案为:2.7.
    14.如图,在⊙O中,直径AB与弦CD交于点E.=2,连接AD,过点B的切线与AD的延长线交于点F.若∠AFB=68°,则∠DEB= 66 °.
    【解答】解:如图,连接OC,OD,
    ∵BF是⊙O的切线,AB是⊙O的直径,
    ∴OB⊥BF,
    ∴∠ABF=90°,
    ∵∠AFB=68°,
    ∴∠BAF=90°﹣∠AFB=22°,
    ∴∠BOD=2∠BAF=44°,
    ∵,
    ∴∠COA=2∠BOD=88°,
    ∴∠CDA=,
    ∵∠DEB是△AED的一个外角,
    ∴∠DEB=∠BAF+∠CDA=66°,
    故答案为:66.
    15.如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为 .
    【解答】解:∵∠C=90°,CA=CB=3,
    ∴,
    由折叠的性质可知AC=AC'=3,
    ∵BC'≥AB﹣AC',
    ∴当A、C′、B三点在同一条直线时,BC'取最小值,最小值即为,
    故答案为 .
    三.解答题(共7小题)
    16.计算:|﹣|﹣(4﹣π)0﹣2sin60°+()﹣1.
    【解答】解:|﹣|﹣(4﹣π)0﹣2sin60°+()﹣1
    =﹣1﹣2×+5
    =﹣1﹣+5
    =4.
    17.如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,B为上一点,OB⊥AC于D.若AC=300m,BD=150m,求公路的转弯处的长.(结果保留π)
    【解答】解:∵OB⊥AC,
    ∴AD= AC=150m,∠AOC=2∠AOB,
    在Rt△AOD中,
    ∵AD2+OD2=OA2,OA=OB,
    ∴AD2+(OA﹣BD)2=OA2,
    ∴+(OA﹣150)2=OA2,
    解得:OA=300m,
    ∴sin∠AOB==,
    ∴∠AOB=60°,
    ∴∠AOC=120°,
    ∴的长==200πm.
    18.四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,BE,CD,GF为长度固定的支架,支架在A,D,G处与立柱AH连接(AH垂直于MN,垂足为H),在B,C处与篮板连接(BC所在直线垂直于MN),EF是可以调节长度的伸缩臂(旋转点F处的螺栓改变EF的长度,使得支架BE绕点A旋转,从而改变四边形ABCD的形状,以此调节篮板的高度).已知AD=BC,DH=208cm,测得∠GAE=60°时,点C离地面的高度为288cm.调节伸缩臂EF,将∠GAE由60°调节为54°,判断点C离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin54°≈0.8,cs54°≈0.6)
    【解答】解:点C离地面的高度升高了,
    理由:如图,当∠GAE=60°时,过点C作CK⊥HA,交HA的延长线于点K,
    ∵BC⊥MN,AH⊥MN,
    ∴BC∥AH,
    ∵AD=BC,
    ∴四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠ADC=∠GAE=60°,
    ∵点C离地面的高度为288cm,DH=208cm,
    ∴DK=288﹣208=80(cm),
    在Rt△CDK中,CD===160(cm),
    如图,当∠GAE=54°,过点C作CQ⊥HA,交HA的延长线于点Q,
    在Rt△CDQ中,CD=160cm,
    ∴DQ=CD•cs54°≈160×0.6=96(cm),
    ∴96﹣80=16(cm),
    ∴点C离地面的高度升高约16cm.
    19.用各种盛水容器可以制作精致的家用流水景观(如图1).
    科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系式为s2=4h(H﹣h).
    应用思考:现用高度为20cm的圆柱体塑料水瓶做相关研究,水瓶直立地面,通过连续注水保证它始终盛满水,在离水面竖直距离hcm处开一个小孔.
    (1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?
    (2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;
    (3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求垫高的高度及小孔离水面的竖直距离.
    【解答】解:(1)∵s2=4h(H﹣h),
    ∴当H=20cm时,s2=4h(20﹣h)=﹣4(h﹣10)2+400,
    ∴当h=10cm时,s2有最大值400cm2,
    ∴当h=10cm时,s有最大值20cm.
    ∴当h为10cm时,射程s有最大值,最大射程是20cm;
    (2)∵s2=4h(20﹣h),
    设存在a,b,使两孔射出水的射程相同,则有:
    4a(20﹣a)=4b(20﹣b),
    ∴20a﹣a2=20b﹣b2,
    ∴a2﹣b2=20a﹣20b,
    ∴(a+b)(a﹣b)=20(a﹣b),
    ∴(a﹣b)(a+b﹣20)=0,
    ∴a﹣b=0,或a+b﹣20=0,
    ∴a=b或a+b=20;
    (3)设垫高的高度为m,则s2=4h(20+m﹣h)=﹣4+(20+m)2,
    ∴当h=cm时,smax=20+m=20+16,
    ∴m=16cm,此时h==18cm.
    当h=>20时,即m>20时,
    h=20时,S2max=362,
    362=4×20×(20+m﹣20),
    ∴M=16.2(舍弃).
    ∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.
    20.如图,AB为⊙O的弦,OC⊥OA交AB于点P,交过点B的直线于点C,且CB=CP.
    (1)试判断直线BC与⊙O的位置关系,并说明理由;
    (2)若sinA=,OA=8,求CB的长.
    【解答】解:(1)直线BC与⊙O相切,
    理由:如图,连接OB,
    ∵OA=OB,
    ∴∠A=∠OBA,
    ∵CP=CB,
    ∴∠CPB=∠CBP,
    ∵∠APO=∠CPB,
    ∴∠APO=∠CBP,
    ∵OC⊥OA,
    ∴∠A+∠APO=90°,
    ∴∠OBA+∠CBP=90°,
    ∴∠OBC=90°,
    ∵OB为半径,
    ∴直线BC与⊙O相切;
    (2)在Rt△AOP中,sinA=,
    ∵sinA=,
    ∴设OP=x,则AP=5x,
    ∵OP2+OA2=AP2,
    ∴,
    解得:x=或﹣(不符合题意,舍去),
    ∴OP=×=4,
    ∵∠OBC=90°,
    ∴BC2+OB2=OC2,
    ∵CP=CB,OB=OA=8,
    ∴BC2+82=(BC+4)2,
    解得:BC=6,
    ∴CB的长为6.
    21.【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?
    【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;
    【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;
    【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.
    (友情提醒:以上作图均不写作法,但需保留作图痕迹)
    【解答】解:【初步尝试】如图1,直线OP即为所求;
    【问题联想】如图2,三角形MNP即为所求;
    【问题再解】如图3中,即为所求.
    22.已知:A、B为圆上两定点,点C在该圆上,∠C为所对的圆周角.
    知识回顾
    (1)如图①,⊙O中,B、C位于直线AO异侧,∠AOB+∠C=135°.
    ①求∠C的度数;
    ②若⊙O的半径为5,AC=8,求BC的长;
    逆向思考
    (2)如图②,若P为圆内一点,且∠APB<120°,PA=PB,∠APB=2∠C.求证:P为该圆的圆心;
    拓展应用
    (3)如图③,在(2)的条件下,若∠APB=90°,点C在⊙P位于直线AP上方部分的圆弧上运动.点D在⊙P上,满足CD=CB﹣CA的所有点D中,必有一个点的位置始终不变.请证明.
    【解答】(1)解:①∵∠AOB+∠C=135°,∠AOB=2∠C,
    ∴3∠C=135°,
    ∴∠C=45°.
    ②连接AB,过A作AD⊥BC,垂足为M,
    ∵∠C=45°,AC=8,
    ∴△ACM是等腰直角三角形,且AM=CM=4,
    ∵∠AOB=2∠C=90°,OA=OB,
    ∴△AOB是等腰直角三角形,
    ∴AB=OA=5,
    在直角三角形ABM中,BM==3,
    ∴BC=CM+BM=4+3=7.
    (2)延长AP交圆于点N,则∠C=∠N,
    ∵∠APB=2∠C,
    ∴∠APB=2∠N,
    ∵∠APB=∠N+∠PBN,
    ∴∠N=∠PBN,
    ∴PN=PB,
    ∵PA=PB,
    ∴PA=PB=PN,
    ∴P为该圆的圆心.
    (3)过B作BC的垂线交CA的延长线于点E,连接AB,延长AP交圆于点F,连接CF,FB,
    ∵∠APB=90°,
    ∴∠C=45°,
    ∴△BCE是等腰直角三角形,
    ∴BE=BC,
    ∵BP⊥AF,PA=PF,
    ∴BA=BF,
    ∵AF是直径,
    ∴∠ABF=90°,
    ∴∠EBC=∠ABF=90°,
    ∴∠EBA=∠CBF,
    ∴△EBA≌△CBF(SAS),
    ∴AE=CF,
    ∵CD=CB﹣CA=CE﹣CA=AE,
    ∴CD=CF,
    ∴必有一个点D的位置始终不变,点F即为所求.
    相关试卷

    广东省深圳市南山外国语学校(集团)第二实验学校2023-2024学年九年级下学期开学考试数学试卷: 这是一份广东省深圳市南山外国语学校(集团)第二实验学校2023-2024学年九年级下学期开学考试数学试卷,共4页。

    广东省深圳市深圳外国语学校2023-2024学年上学期八年级期末考试数学试卷: 这是一份广东省深圳市深圳外国语学校2023-2024学年上学期八年级期末考试数学试卷,共8页。

    广东省深圳市龙岗区外国语学校2023-2024学年九年级上学期月考数学试题: 这是一份广东省深圳市龙岗区外国语学校2023-2024学年九年级上学期月考数学试题,共27页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map