重庆市第八中学2023-2024学年度高二上学期检测六数学试题(Word版附解析)
展开
这是一份重庆市第八中学2023-2024学年度高二上学期检测六数学试题(Word版附解析),共22页。试卷主要包含了 在等差数列中,,,则等内容,欢迎下载使用。
一.选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 在等差数列中,,,则( )
A. 4B. 5C. 6D. 8
【答案】C
【解析】
【分析】由等差数列的性质得到,从而求出公差,得到答案.
【详解】由等差数列的性质可知,
又,故,
设等差数列的公差为,则,
所以.
故选:C
2. 已知随机事件和互斥,且,,则等于( )
A. B. C. D.
【答案】B
【解析】
【分析】因为和互斥,由求出,再由即可得到答案.
【详解】因为和互斥,
所以,
又,
所以,
因为,
所以.
故选:B.
3. 记等差数列的公差为,若是与的等差中项,则d的值为( )
A. 0B. C. 1D. 2
【答案】C
【解析】
【分析】根据给定条件,利用等差数列通项公式及等差中项的意义列式求解即得.
【详解】等差数列的公差为,由是与的等差中项,得,
即,整理得,而,解得,
所以d值为1.
故选:C
4. “中国剩余定理”又称“孙子定理”.1852年英国来华传教士伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲. 1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”. “中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2021这2020个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为( )
A. B. C. D.
【答案】C
【解析】
【分析】由题设且,应用不等式求的范围,即可确定项数.
【详解】由题设,且,
所以,可得且.
所以此数列的项数为.
故选:C
5. 已知满足对一切正整数均有且恒成立,则实数的范围是( )
A. B. C. D.
【答案】C
【解析】
【分析】根据题意整理可得对一切正整数恒成立,根据恒成立问题分析求解.
【详解】因为满足对一切正整数均有且恒成立,
即恒成立,化为,
可知对一切正整数恒成立,所以,
故选:C.
6. 在椭圆中,已知焦距为2,椭圆上的一点与两个焦点的距离的和等于4,且,则的面积为( )
A. B. C. D.
【答案】D
【解析】
【分析】根据椭圆中焦点三角形的几何性质,结合椭圆的定义与余弦定理即可求得各边长,再利用面积公式即可求得的面积.
【详解】由题可知,焦距,则,又椭圆上的一点与两个焦点的距离的和等于4,
即,所以,
在中,,
由余弦定理得:,
整理得,所以,则,故的面积.
故选:D.
7. “斐波那契”数列是由十三世纪意大利数学家斐波那契发现的,数列中的一系列数字常被人们称为神奇数,具体数列为1,1,2,3,5,8,…,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列为“斐波那契”数列,为数列的前项和,若,则( )
A. B. C. D.
【答案】C
【解析】
【分析】利用迭代法可得,可得,即得.
【详解】∵
,
∴.
故选:C.
8. 已知双曲线的左、右焦点分别为,,过的直线与C的两条渐近线分别交于A,B两点,若A为线段的中点,且,则C的离心率为( )
A. B. 2C. D. 3
【答案】B
【解析】
【分析】由题意可得为直角三角形,再结合A为线段的中点,可得AO垂直平分,可表示出直线,再联立渐近线方程可以得到,,的关系,进而得到双曲线离心率
【详解】由题意可知,过的直线与C的两条渐近线分别交于A,B两点,当两个交点分别在第二和第三象限时不符合,
A为线段的中点,当交点在轴上方或轴下方时,根据对称性结果是一样的,选择一种即可,如图.
根据双曲线可得,,,两条渐近线方程,
,为的中点,
,又A为线段BF1的中点,垂直平分,
可设直线为①,直线为②,直线为③,
由②③得,交点坐标,点还在直线上,,可得,
,所以双曲线C的离心率,
故选:B
二.多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求的,全部选对的得5分,有选错的得0分,部分选对的得2分.)
9. 数列的前项和为,已知,则下列说法正确的是( )
A. 数列是递增数列B.
C. 当时,D. 当或4时,取得最大值
【答案】BCD
【解析】
【分析】根据给定的前项和,求出,再逐项判断作答.
【详解】数列的前项和,当时,,
而满足上式,所以,B正确;
数列是公差为的等差数列,是单调递减的,A不正确;
当时,,C正确;
当时,,即数列前3项均为正,第4项为0,从第5项起为负,
因此当或4时,取得最大值,D正确
故选:BCD
10. 一个袋子中有大小和质地均相同的3个小球,分别标有数字1,2,3,现分别用三种方案进行摸球游戏.方案一:任意摸出一个球并选择该球;方案二:先后不放回的摸出两个球,若第二次摸出的球号码比第一次大,则选择第二次摸出的球,否则选择未被摸出的球;方案三:同时摸出两个球,选择其中号码较大的球.记三种方案选到3号球的概率分别为,,,则( )
A. B. C. D.
【答案】ABD
【解析】
【分析】根据题意分别求,,,方案一:直接求解即可;方案二:选到3号球有两种可能:第二次摸出的为3号球,或第一次2号球,第二次1号球;方案三:根据古典概型利用列举法求解.
【详解】方案一:“选到3号球”的概率,
方案二:选到3号球有两种可能:第二次摸出的为3号球,或第一次2号球,第二次1号球,则“选到3号球”的概率,
方案三:同时摸出两个球共有:共3个基本事件,“选到3号球”包含共2个基本事件,“选到3号球”的概率.
∴,,,,ABD正确,C错误.
故选:ABD.
11. 若正项数列是等差数列,且,则( )
A. 当时,B. 的取值范围是
C. 当为整数时,的最大值为29D. 公差的取值范围是
【答案】ABC
【解析】
【分析】对于A,根据等差数列的定义求出公差的值,即可求出;又数列是正项等差数列,根据,即可求出公差的取值范围,继而可以判断B,C,D.
【详解】当,时,公差,,故A正确;
因为是正项等差数列,所以,即,且,
所以公差的取值范围是,故D错误;
因为,所以的取值范围是,故B正确;
,当为整数时,的最大值为29,故C正确;
故选:ABC.
12. 如图,已知矩形中,,.点为线段上一动点(不与点重合),将沿向上翻折到,连接,.设,二面角的大小为,则下列说法正确的有( )
A. 若,,则
B. 若,则存在,使得平面
C. 若,则直线与平面所成角的正切值的最大值为
D. 点到平面的距离的最大值为,当且仅当且时取得该最大值
【答案】AD
【解析】
【分析】根据翻折前后的几何关系,利用面面垂直的性质定理,结合余弦定理求解选项A;利用线面垂直的判定定理、性质定理判断选项B;利用翻折前后的几何关系,结合线面角的定义求解选项C;利用几何关系,以及线面垂直的性质定理、判定定理求解选项D.
【详解】
对A,取中点,连接,,,
则有,且,所以,
又平面平面,平面平面,平面,
所以平面,平面,
故,,
在直角三角形中,,
所以,
在中,由余弦定理得:,A正确;
对B,同选项A,知,若平面,
且平面,则,
且平面,
所以平面,平面,所以,显然矛盾,B错误;
对C,连接交于点,因为几何关系可知,,
所以,
又因为,
所以所以,
即,则,,平面,
所以平面,平面,
所以平面平面,故所求线面角为.
又点在以为圆心,为半径的圆上,
从而当直线与圆相切时,最大,
故,从而,C错误;
对D,点到平面的距离,
等号成立当且仅当平面,
因为平面,所以,从而,
且矩形中,平面,
所以平面,过作于点.
连接,在直角三角形中,
由等面积法可得,,所以,
所以,
因以平面,平面,
,平面,
所以平面,
由翻折知,故,解得,即.
又由二面角的面积射影知:,D正确;
故选:AD.
【点睛】关键点点睛:本题的关键在于利用翻折前后的几何关系,结合直线与平面、平面与平面的判定定理、性质定理证明相应的结论.
三.填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置上.)
13. 若一数列为1,,,,…,则是这个数列的第________项.
【答案】15
【解析】
【分析】根据数列指数的特点求出通项公式,即可得到结果.
【详解】数列的指数分别是0,7,14,21,…,
则指数部分构成首项为,公差为的等差数列,
则对应指数的通项公式为,
由,
所以是这个数列的第15项.
故答案为:15
14. 甲、乙二人进行射击游戏,甲、乙射击击中与否是相互独立事件,规则如下:若射击一次击中,则此人继续射击;若射击一次不中,就由对方接替射击. 已知甲、乙二人射击一次击中的概率均为,且第一次由甲开始射击,则前2次射击中甲恰好击中1次的概率是_________;第3次由甲射击的概率是_________.
【答案】 ①. ②.
【解析】
【分析】第一空:前2次射击中甲恰好击中1次只有一种情况,从而得出结果;第二空:第3次由甲射击有两种情况,分类讨论得出结果.
【详解】第一空:前2次射击中甲恰好击中1次只有一种情况:第1次甲击中,第2次甲未击中,故概率是;
第二空:第3次由甲射击有两种情况是:第1次甲击中,第2次甲还击中;第1次甲未击中,第2次乙也未击中,
故概率是.
故答案为:;.
15. 数列满足:,则的值为______.
【答案】
【解析】
【分析】根据数列的通项公式逐个代入,当代入到第五个时,发现出现重复,则数列存在周期,利用周期的特点求值即可.
【详解】解:∵,,
∴当时,,
当时,,
依此类推,,,,
∴数列为周期数列,周期,
∴.
故答案为:.
16. 已知抛物线焦点为F,斜率为k的直线过F交抛物线于A,B,中点为Q,若圆上存在点P使得,则k的取值范围是______.
【答案】
【解析】
分析】根据题意,设直线,然后联立抛物线方程,然后列出不等式,代入计算,即可得到结果.
【详解】
设中点为,即,P在为直径的圆上,所以只需该圆与为直径的圆有公共点即可.
设直线,联立得
解得,,
所以圆心距,即可(不可能内含)
则化简得,
代入得,
故答案为:
四.解答题(本大题共6小题,共70分.请将正确答案做在答题卷相应位置,要有必要的推理或证明过程.)
17. 已知抛物线()的焦点F与双曲线的一个焦点重合.
(1)求抛物线C的方程;
(2)过点F的直线与抛物线C交于A,B两点,且,求线段的中点M到准线的距离.
【答案】(1)
(2)5
【解析】
【分析】(1)根据双曲线的焦点求得,从而求得抛物线的方程.
(2)先根据抛物线过焦点的弦长公式求得点的横坐标,结合准线方程求得到准线的距离.
【小问1详解】
∵双曲线的焦点坐标为,
又抛物线()的焦点,
∴,即.
∴抛物线C的方程为.
【小问2详解】
设,,由抛物线定义,
知,
∴,于是线段的中点M的横坐标是3,
又准线方程是,
∴点M到准线的距离等于.
18. 为普及消防安全知识,某学校组织相关知识竞赛.比赛共分为两轮,每位参赛选手均须参加两轮比赛,若其在两轮比赛中均胜出,则视为赢得比赛.已知在第一轮比赛中,选手甲、乙胜出的概率分别为,;在第二轮比赛中,甲、乙胜出的概率分别为,,甲、乙两人在每轮比赛中是否胜出互不影响.
(1)甲在比赛中恰好赢一轮的概率;
(2)从甲、乙两人中选1人参加比赛,派谁参赛赢得比赛的概率更大?
(3)若甲、乙两人均参加比赛,求两人中至少有一人赢得比赛的概率.
【答案】(1)
(2)派甲参赛获胜的概率更大
(3)
【解析】
【分析】(1)根据独立事件的乘法公式计算即可;
(2)利用独立事件的乘法公式分别求出甲乙赢的概率,据此即可得出结论;
(3)先求出两人都没有赢得比赛,再根据对立事件的概率公式即可得解.
【小问1详解】
设“甲在第一轮比赛中胜出”,“甲在第二轮比赛中胜出”,
“乙在第一轮比赛中胜出”,“乙在第二轮比赛中胜出”,
则,,,相互独立,且,,,,
设“甲在比赛中恰好赢一轮”
则;
【小问2详解】
因为在两轮比赛中均胜出赢得比赛,则“甲赢得比赛”,“乙赢得比赛”,
所以,
,
因为,所以派甲参赛获胜的概率更大;
【小问3详解】
设“甲赢得比赛”,“乙赢得比赛”,
于是“两人中至少有一人赢得比赛”,
由(2)知,,
所以,
,
所以.
19. 已知点,依次为双曲线:的左右焦点,,,.
(1)若,以为方向向量的直线经过,求到的距离.
(2)在(1)的条件下,双曲线上是否存在点,使得,若存在,求出点坐标;若不存在,请说明理由.
【答案】(1)
(2)不存在,理由见解析
【解析】
【分析】(1)根据题意求双曲线方程以及直线的方程,进而求点到直线的距离;
(2)设,根据数量积的坐标运算结合双曲线方程运算求解.
【小问1详解】
由题意可知:,,,
则,可知双曲线的方程为,
因为为直线的方向向量,则直线的斜率,
且点在直线上,则直线方程为,即,
所以到的距离.
【小问2详解】
由题意可知:,设,
则,
因为,整理得:,
由点在双曲线上,则,
可得:,即,
所以,无解,所以不存在.
20. 2023年10月22日,汉江生态城2023襄阳马拉松在湖北省襄阳市成功举行,志愿者的服务工作是马拉松成功举办的重要保障,襄阳市新时代文明实践中心承办了志愿者选拔的面试工作.现随机抽取了100名候选者的面试成绩,并分成五组:第一组,第二组,第三组,第四组,第五组,绘制成如图所示的频率分布直方图.已知第一、二组的频率之和为0.3,第一组和第五组的频率相同.
(1)估计这100名候选者面试成绩的平均数和第25百分位数;
(2)现从以上各组中用分层随机抽样的方法选取20人,担任本市的宣传者.
①现计划从第一组和第二组抽取的人中,再随机抽取2名作为组长.求选出的两人来自不同组的概率.
②若本市宣传者中第二组面试者的面试成绩的平均数和方差分别为62和40,第四组面试者的面试成绩的平均数和方差分别为80和70,据此估计这次第二组和第四组面试者所有人的方差.
【答案】(1)平均数为,第25百分位数为63
(2)①;②
【解析】
【分析】(1)由频率分布直方图列出方程组解出,然后分别计算出平均数和百分位数即可;
(2)①先利用分层抽样的方法计算样本,然后利用古典概型概率求解,然后根据题意计算方差即可.
【小问1详解】
由题意可知:,
解得,
可知每组的频率依次为:,
所以平均数等于,
因为,
设第25百分位数为,
则,
解得,
第25百分位数为63.
【小问2详解】
①根据分层抽样,和的频率比为,
故在和中分别选取1人和5人,分别编号为A和1,2,3,4,5,
则在这6人中随机抽取两个的样本空间包含的样本点有:
,,,,A5,12,13,14,15,23,24,25,34,35,45,
共15个,即,
记事件B“两人来自不同组”,则B包含的样本点有,,,,共5个,
即,所以
②设第二组、第四组的平均数与方差分别为,,,,
且两组频率之比为,
成绩在第二组、第四组的平均数
成绩在第二组、第四组的方差
,
故估计成绩在第二组、第四组的方差是.
21. 如图①,在直角梯形中,,,.将沿折起,使平面平面,连,得如图②的几何体.
(1)求证:平面平面;
(2)若,二面角的平面角的正切值为,在棱上是否存在点使二面角的平面角的余弦值为,若存在,请求出的值,若不存在,说明理由.
【答案】(1)证明见解析
(2)存在,
【解析】
【分析】(1)根据面面垂直的性质定理和线面垂直的性质得到,然后根据线面垂直和面面垂直的判定定理证明即可;
(2)根据二面角的定义得到为二面角的平面角,根据二面角的正切值得到,,然后根据相似得到,,然后建系,设利用空间向量的方法列方程求即可.
【小问1详解】
∵平面平面,平面平面,,平面,
∴平面,
∵平面,
∴,
∵,,平面,
∴平面,
∵平面,
∴平面平面.
【小问2详解】
由(1)知平面,,而平面,故.
∴为二面角的平面角,
又平面,平面,
∴,,
∴,.
在①,∴,
令,则,
解得.即,.
在①中作,垂足.
①
则可得,.
∵平面平面,平面,平面平面,
∴平面,
过作,以为原点,,,分别为轴轴轴建立如图直角坐标系,则
②
,,,.
,,
设,.
设平面的法向量为,则
,∴,取,,即,
设平面法向量为,则
,取,,.即.
.
解得(舍去),或.
∴.
22. 已知椭圆的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程;
(2)设斜率为k的直线与椭圆C交于两点,O为坐标原点,若的面积为定值,判断是否为定值,如果是,求出该定值;如果不是,说明理由.
【答案】(1)
(2)是定值,定值为6
【解析】
【分析】(1)根据题意条件,可直接求出的值,然后再利用条件中、的关系,借助即可求解出、的值,从而得到椭圆方程;
(2)根据已知条件设出、所在的直线方程,然后与椭圆联立方程,分别表示出根与系数的关系,再表示出弦长关系,再计算点到直线的距离,把面积用和的式子表示出来,通过给出的面积的值,找到和的等量关系,将等量关系带入到利用跟与系数关系组合成的中即可得到答案.
【小问1详解】
由题意:,
由知:,
故椭圆C的标准方程为,
【小问2详解】
设:,①
椭圆.②
联立①②得:,
,即
∴,
O到直线l的距离,
∴
,
∴,即,
∴
.
相关试卷
这是一份重庆市第八中学校2023-2024学年高二上学期阶段检测数学试题(九)(Word版附解析),共22页。试卷主要包含了 设等差数列前n项和为,若,则,433B等内容,欢迎下载使用。
这是一份重庆市第七中学2023-2024学年高二上学期期末模拟检测数学试题(Word版附解析),共22页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份重庆市第八中学2023-2024学年高二上学期第二次月考数学试题(Word版附解析),共22页。