第五六单元月考综合测试(月考)2023-2024年五年级上册数学(西师大版)
展开
这是一份第五六单元月考综合测试(月考)2023-2024年五年级上册数学(西师大版),共13页。试卷主要包含了选择题,填空题,判断题,解答题等内容,欢迎下载使用。
一、选择题
1.梯形的上底和下底不变,高扩大4倍,它的面积( ).
A.扩大4倍 B.缩小4倍 C.无法确定
2.一个三角形和一个平行四边形的面积相等,如果它们的高相等,那么三角形的底是平行四边形底的( )。
A.2倍B.一半C.1倍
3.一个三角形和一个平行四边形的面积相等,高也相等,已知平行四边形的底是14cm,那么三角形的底是( )
A.7 cmB.28 cmC.14 cm
4.两个面积相等的平行四边形,它们的底和高( )相等.
A.一定B.有可能C.不可能
5.求下面梯形的面积,列式正确的是( )
A.(4+5)×8÷2B.(8+11)×5﹣2C.(8+11)×4÷2
6.一个三角形的底是2.5厘米,面积是10平方厘米,它的高是x厘米,列方程是( )
A.2.5x=10B.2.5x×2=10C.2.5x÷2=10
7.如图,甲、乙、丙三个三角形的面积关系是:甲+乙( )丙.
A.大于B.小于C.等于
二、填空题
8.用一根长84厘米的铁丝围成一个正方形,它的面积是 平方厘米.如果把它围成一个三条边长度的比 是3:4:5的直角三角形,这个三角形斜边长是 厘米.
9.三角形的面积等于与它 的平行四边形面积的 .
10.一个梯形的上下底的和是25,高是12,则梯形的面积是 .
11.用100厘米长的铁丝围成四边形,这个四边形的面积最大是 平方厘米.
12.已知△ABC中,AB=AC=12cm,△ABC的面积是42cm2,P是BC上任意一点,P到AB,AC的距离是x和y,那么x+y的值等于 .
13.一个等腰直角三角形的直角边是10厘米,它的面积是( )平方厘米.
14.一个梯形的面积是65平方厘米,高10厘米,它的上底和下底之和是 厘米.
15.平行四边形的底是3dm,高是12.5cm,它的面积是 ;与它等底等高的三角形的面积是 .
三、判断题
16.从一副扑克牌中(去掉大小王),任意抽出一张,按花色分有4种可能的结果。( )
17.边长是1000米的正方形面积是1平方千米.( )
18.两个大小相同的三角形就能拼成一个平行四边形。( )
19.把一个平行四边形的框架拉成一个长方形,周长和面积都减少了。( )
20.底乘另一条底上的高也可以求出三角形的面积。( )
21.一个三角形的底是1.2分米,高0.8分米,面积是0.96平方分米.( )
22.计算组合图形的面积也要用到基本图形的面积公式。 ( )
23.在装有黑、白两色球的盒子中,摸出红球的可能性是0. ( )
四、解答题
24.李奶奶用一块靠墙的梯形菜地种西红柿。(如图,单位:米)
(1)这块菜地的面积是多少?
(2)如果每平方米可产西红柿3.6千克,一共可产西红柿多少千克?
25.如图,在长方形ABCD中,AD=20,AB=12,其中四边形OEFG的面积是30,请计算图中三块阴影部分的面积之和.
26.在一块底边长8m,高6.5m的平行四边形菜地里种萝卜.如果每m2收萝卜7.5kg,这块地可收萝卜多少千克?
27.如图:D是AB的中点,AE是AC的三分之一,DE把三角形ABC分为甲、乙两部分,甲的面积是20平方分米,则三角形ABC的面积是多少?
28.如图,在长方形内有一个最大的三角形.请你首先在图中量出所需数据标在图上,然后求出三角形的面积.(可在图中添上你需要的线)
29.王叔叔用32米长的篱笆靠墙围了一个梯形菜地(如图),这块菜地面积多大?
30.有一块梯形菜地,上底长17米,下底长33米,高14.8米,如果每平方米蔬菜收入36.5元,这块地的总收入是多少元?
31.一块平行四边形钢板,底是12.5米,高是6米,每平方米钢板重10千克。这块钢板重多少千克?
参考答案:
1.A
【详解】略
2.A
【分析】根据三角形和平行四边形的面积公式可得:三角形的高=面积×2÷底;平行四边形的高=面积÷底,由此即可进行比较,解答问题。
【详解】三角形的高=面积×2÷底
平行四边形的高=面积÷底
当三角形和平行四边形的面积和底分别相等时,三角形的高是平行四边形的高的2倍。
故答案为:A
【点睛】考查了平行四边形的面积和三角形的面积公式,解题的关键是知道底相等、面积也相等的三角形和平行四边形中三角形的高是平行四边形的高的2倍。
3.B
【详解】试题分析:根据三角形的面积公式S=ah÷2,知道a1=2S÷h,根据平行四边形的面积公式S=ah,知道a2=S÷h,所以三角形的底是平行四边形的底的2倍,a1=2a2,由此求出平行四边形的高.
解:设三角形的高为a1,平行四边形的高为a2,
因为a1=2S÷h,a2=S÷h,
所以2a1=a2,
所以三角形的底是平行四边形的底的2倍,
则三角形的底是:14×2=28(cm).
故选B.
点评:此题主要考查了利用三角形的面积公式与平行四边形的面积公式推导出三角形与平行四边形的面积相等,高也相等时底的关系,由此解决问题.
4.B
【详解】试题分析:根据平行四边形的面积公式:底×高=平行四边形的面积,那么两个平行四边形的面积相等说明这两个平行四边形的底与高的积相等,不代表它们的底和高相等,可用假设法进行验证说明即可得到答案.
解:假设一:一个平行四边形的底为6米,高为2米,那么面积为:6×2=12(平方米),
另一个平行四边形的底为4米,高为3米,那么面积为:4×3=12(平方米);
假设二:两个平行四边形的底都为6米,高都为2米,那么面积就都为:6×2=12(平方米);
所以两个平行四边形的面积相等,它们的底和高不一定相等.
故选B.
点评:此题主要考查的是平行四边形面积公式的应用.
5.C
【详解】试题分析:根据梯形的面积公式S=(a+b)h÷2,把梯形的上底8,下底11,高4代入公式,解答即可.
解:(8+11)×4÷2,
=19×4÷2,
=38;
故选C.
点评:本题主要是利用梯形的面积公式S=(a+b)h÷2解决问题.
6.C
【详解】试题分析:三角形的面积=×底×高,底和面积已知,从而可以列方程求解.
解:设它的高是x厘米,
则2.5x÷2=10,
故选C.
点评:此题主要考查三角形的面积公式.
7.C
【详解】试题分析:一个平行四边形如图所示分成了甲乙丙三个三角形,丙的面积是平行四边形面积的一半,甲和乙的面积和也是平行四边形面积的一半,所以甲和乙的面积之和与丙的面积相等.
解:甲乙面积和等于丙的面积.
故选C.
点评:此题主要考查三角形的面积比较,关键看它们与平行四边形之间的关系.
8.441;35
【详解】试题分析:(1)根据正方形的周长公式可以先求出这个正方形的边长,再利用正方形的面积公式即可解答;
(2)根据三角形的边长之比,即可求出这个直角三角形最大边的长度,即斜边的长度.
解:(1)84÷4=21,
21×21=441(平方厘米),
(2)3+4+5=12,
直角三角形的斜边长是:84×=35(厘米),
答:正方形的面积是441平方厘米,直角三角形的斜边是35平方厘米.
故答案为441;35.
点评:此题考查了正方形、直角三角形的周长和面积公式的灵活应用,和按比例分配的方法求解的方法.
9. 等底等高 一半
【分析】三角形的面积=底×高÷2,平行四边形的面积=底×高,则三角形的面积是与其等底等高的平行四边形面积的一半,据此解答即可.
【详解】因为两个完全一样的三角形可以拼成一个平行四边形,
三角形的面积=底×高÷2,平行四边形的面积=底×高,
所以三角形的面积等于与它等底等高的平行四边形面积的一半;
故答案为等底等高,一半.
10.150
【详解】试题分析:梯形的面积=(上底+下底)×高÷2,代入数据即可求解.
解:25×12÷2,
=300÷2,
=150;
答:梯形的面积是150.
故答案为150.
点评:此题主要考查梯形的面积的计算方法.
11.625
【详解】试题分析:当周长一定时,如果要围成面积最大的四边形,只有围成正方形时面积最大.由周长可以求出所围成的正方形的边长,再由边长求出面积即可.
解:由分析可知:围成正方形时面积最大,所围成的正方形的边长为:100÷4=25(厘米),
所以面积为:25×25=625(平方厘米).
故答案为625.
点评:本题考查了面积的大小比较,应让学生在平时的学习中注意积累规律,当周长一定时,围成的四边形中正方形的面积最大,若没有要求围成四边形,则围成圆形时面积最大.
12.7
【详解】试题分析:如图所示,由题意可得:三角形ABP的面积+三角形APC的面积=三角形ABC的面积,据此代入数据即可求解.
解:由题意可得:
12x÷2+12y÷2=42,
6x+6y=42,
x+y=7;
答:x+y的值等于7.
故答案为7.
点评:解答此题的关键是得出等量关系式“三角形ABP的面积+三角形APC的面积=三角形ABC的面积”,问题即可得解.
13.50
【详解】10×10÷2=50(平方厘米)
答:它的面积是50平方厘米。
故答案为:50。
14.13
【详解】试题分析:根据梯形的面积=(上底+下底)×高÷2,可用梯形的面积乘2再除以高,列式解答即可得到答案.
解:65×2÷10
=130÷10,
=13(厘米),
答:这个梯形上底与下底的和是13厘米.
故答案为13.
点评:此题主要考查的是梯形的面积公式的灵活应用.
15. 375平方厘米 187.5平方厘米
【点睛】此题主要考查平行四边形面积公式的灵活运用,以及等底等高的三角形与平行四边形面积之间关系的灵活运用.
【详解】3分米=30厘米,30×12.5=375(平方厘米),375÷2=187.5(平方厘米),答:平行四边形的面积是375平方厘米,三角形的面积是187.5平方厘米.
16.√
【分析】要判断抽出的一张可能是什么花色,就要看这副扑克牌有几种花色,有几种花色就存在几种可能。
【详解】一副扑克牌去掉大小王,还有红桃、黑桃、梅花、方块四种花色,所以任意抽出一张,按花色分有4种可能的结果。
故答案为:√
【点睛】解决此题的关键是明确只要扑克牌中有的花色都有可能抽到。
17.√
【详解】试题分析:利用正方形的面积=边长×边长,即可求出这个正方形的面积,从而作出正确判断.
解:1000米=1千米,
1×1=1(平方千米);
答:边长是1000米的正方形面积是1平方千米;
故答案为√
点评:此题主要考查正方形的面积的计算方法,解答时要注意单位的换算.
18.×
【分析】两个大小相同(面积相等)、形状相同的三角形可以拼成一个平行四边形。据此进行判断即可。
【详解】根据三角形面积公式可知:大小相同(面积相等)的三角形形状不一定相同,所以两个大小相同的三角形不一定能拼成一个平行四边形。
故答案为:×
【点睛】两个完全一样的三角形才能拼成一个平行四边形。
19.×
【分析】将平行四边形框架拉成长方形,图形的边没有发生变化,所以周长不变;
平行四边形面积=底×高,长方形面积=长×宽,将平行四边形框架拉成长方形后,图形的高度增加了,所以图形的面积增加了。据此解题。
【详解】把一个平行四边形的框架拉成一个长方形,周长不变,面积增大了。
故答案为:×
【点睛】本题考查了平行四边形和长方形的周长和面积,熟记公式是解题的关键。
20.×
【详解】三角形的底乘对应的高,再除以2即可求出三角形的面积,切记求三角形的面积时,底和高一定是对应的。
故答案为:×。
21.×
22.√
【分析】在计算组合图形的面积,一般通过分割法或添补的方法,把它转化成基本图形后进行计算。
【详解】在计算组合图形的面积,把它转化成基本图形后进行计算,所以也要用到基本图形的面积公式。原题说法正确。
故答案为:√
【点睛】本题考查了解决组合图形的面积时的基本方法,平时计算时多注意观察,即可判断。
23.√
【详解】在装有黑、白两色球的盒子中,摸出红球的可能性是0。原题说法正确。
故答案为:正确。
【分析】只有黑、白两种颜色,没有红球,因此不可能摸出红球,也就是摸出红球的可能性是0。
24.(1)47.25平方米
(2)170.1千克
【分析】(1)根据梯形的面积公式:(上底+下底)×高÷2,代入数据,求出菜地面积;
(2)再用菜地的面积×每平方米可产西红柿3.6千克,即可求出可产西红柿多少千克。
【详解】(1)(9+4.5)×7÷2
=13.5×7÷2
=94.5÷2
=47.25(平方米)
答:这块菜地的面积是47.25平方米。
(2)47.25×3.6=170.1(千克)
答:一共可产西红柿170.1千克。
【点睛】本题考查梯形面积公式的应用,关键是熟记公式。
25.150
【详解】试题分析:由图意可知:S△CDF=S△DBF,同时减去公共部分三角形DFG,则剩下的面积还相等,即:S△FBG=S△CDG,于是阴影部分的面积就等于长方形的面积,再加四边形OEFG的面积,长方形的面积可求,四边形OEFG的面积已知,从而问题得解.
解:阴影部分面积:×(20×12)+30,
=×240+30,
=120+30,
=150;
答:图中三块阴影部分的面积之和为150.
点评:解答此题的关键是:运用等量代换,将阴影部分的面积转化成和长方形的面积以及四边形OEFG的面积有关的图形的面积,于是可以求解.
26.390kg
【分析】先利用已知条件求出菜地的面积,因为每m2收萝卜7.5kg,则可以求这块地收萝卜的总量.
【详解】8×6.5×7.5=390(千克);
答:这块地可收萝卜390kg.
27.120平方分米
【详解】试题分析:如图所示,因为AD=BD,AE=AC,所以可得AD:BD=1:1,AE:EC=1:2,因为三角形ADE的面积是20平方分米,根据高一定时,三角形的面积与底成正比例的性质即可解答.
解:据分析解答如下:
因为AD=BD,AE=AC,所以可得AD:BD=1:1,AE:EC=1:2,
S△DEC=S△ADE×2=20×2=40(平方分米),
S△ABC=S△ADC×2=(20+40)×2=120(平方分米),
答:三角形ABC的面积是120平方分米.
点评:此题考查了高一定时,三角形的面积与底成正比例的性质的灵活应用.
28.4.375平方厘米
【详解】试题分析:要求三角形的面积必须知道三角形的底和对应的高,由此做出高,再测量出底和对应的高的长度,利用三角形的面积公式S=ah÷2,列式解答即可.
解:3.5×2.5÷2,
=8.75÷2,
=4.375(平方厘米),
答:三角形的面积为4.375平方厘米.
点评:本题主要考查了三角形的面积的计算方法.
29.78平方米
【分析】由题意可知:用篱笆的长度减去6米即为梯形上底加下底的和,然后根据梯形的面积=(上底+下底)×高÷2,代入数值即可求出菜地的面积。
【详解】(32-6)×6÷2
=26×6÷2
=156÷2
=78(平方米)
答:这块菜地面积是78平方米。
【点睛】本题考查梯形的面积,明确用篱笆的长度减去高即为上底加下底的和是解题的关键。
30.13505元
【详解】(17+33)×14.8÷2=370(平方米)
370×36.5=13505(元)
答:这块地的总收入是13505元.
31.750千克
【分析】先利用平行四边形的面积公式求出这块钢板的面积,再依据每平方米钢板重10千克,即可求出钢板的重量。
【详解】钢板的面积:12.5×6=75(平方米)
钢板的质量:75×10=750(千克)
答:这块钢板重750千克。
【点睛】解答此题的关键是先求出这块钢板的面积,进而求其重量。
相关试卷
这是一份第五六单元月考综合测试(月考)2023-2024学年六年级上册数学(苏教版),共8页。试卷主要包含了选择题,填空题,判断题,计算,解答题等内容,欢迎下载使用。
这是一份第五六单元月考综合测试(月考)-四年级上册数学西师大版,共11页。试卷主要包含了选择题,填空题,判断题,解答题等内容,欢迎下载使用。
这是一份第五六单元月考(月考)-五年级上册数学人教版,共14页。试卷主要包含了选择题,填空题,判断题,计算题,解答题等内容,欢迎下载使用。