专题05 立体几何(选择题、填空题)(理)(学生版)2021-2023年高考数学真题分类汇编(全国通用)
展开这是一份专题05 立体几何(选择题、填空题)(理)(学生版)2021-2023年高考数学真题分类汇编(全国通用),共8页。试卷主要包含了某几何体的三视图如图所示(单位等内容,欢迎下载使用。
知识点1:三视图
知识点2:空间几何体表面积、体积、侧面积
知识点3:空间直线、平面位置关系的判断
知识点4:线线角、线面角、二面角
知识点5:外接球、内切球问题
知识点6:立体几何中的范围与最值问题及定值问题
近三年高考真题
知识点1:三视图
1.(2023•乙卷(理))如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为
A.24B.26C.28D.30
2.(2022•浙江)某几何体的三视图如图所示(单位:,则该几何体的体积(单位:是
A.B.C.D.
3.(2021•北京)某四面体的三视图如图所示,该四面体的表面积为
A.B.C.D.
4.(2021•浙江)某几何体的三视图如图所示(单位:,则该几何体的体积(单位:是
A.B.3C.D.
知识点2:空间几何体表面积、体积、侧面积
5.(2023•乙卷(理))已知圆锥的底面半径为,为底面圆心,,为圆锥的母线,,若的面积等于,则该圆锥的体积为
A.B.C.D.
6.(2022•新高考Ⅰ)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为.将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为
A.B.C.D.
7.(2022•北京)已知正三棱锥的六条棱长均为6,是及其内部的点构成的集合.设集合,则表示的区域的面积为
A.B.C.D.
8.(2023•天津)在三棱锥中,线段上的点满足,线段上的点满足,则三棱锥和三棱锥的体积之比为
A.B.C.D.
9.(2023•甲卷(理))在四棱锥中,底面为正方形,,,,则的面积为
A.B.C.D.
10.(多选题)(2023•新高考Ⅱ)已知圆锥的顶点为,底面圆心为,为底面直径,,,点在底面圆周上,且二面角为,则
A.该圆锥的体积为B.该圆锥的侧面积为
C.D.的面积为
11.(2022•天津)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为,腰为3的等腰三角形,则该几何体的体积为
A.23B.24C.26D.27
12.(2021•新高考Ⅰ)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为
A.2B.C.4D.
13.(多选题)(2022•新高考Ⅱ)如图,四边形为正方形,平面,,.记三棱锥,,的体积分别为,,,则
A.B.C.D.
14.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为
A.B.C.D.
15.(2023•新高考Ⅱ)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为 .
16.(2023•新高考Ⅰ)在正四棱台中,,,,则该棱台的体积为 .
17.(2022•上海)已知圆柱的高为4,底面积为,则圆柱的侧面积为 .
知识点3:空间直线、平面位置关系的判断
18.(2023•上海)如图所示,在正方体中,点为边上的动点,则下列直线中,始终与直线异面的是
A.B.C.D.
19.(2022•上海)如图正方体中,、、、分别为棱、、、的中点,联结,.空间任意两点、,若线段上不存在点在线段、上,则称两点可视,则下列选项中与点可视的为
A.点B.点C.点D.点
20.(2022•上海)上海海关大楼的顶部为逐级收拢的四面钟楼,如图,四个大钟分布在四棱柱的四个侧面,则每天0点至12点(包含0点,不含12点)相邻两钟面上的时针相互垂直的次数为
A.0B.2C.4D.12
21.(2021•浙江)如图,已知正方体,,分别是,的中点,则
A.直线与直线垂直,直线平面
B.直线与直线平行,直线平面
C.直线与直线相交,直线平面
D.直线与直线异面,直线平面
22.(多选题)(2021•新高考Ⅱ)如图,下列正方体中,为底面的中心,为所在棱的中点,,为正方体的顶点,则满足的是
A.B.
C.D.
知识点4:线线角、线面角、二面角
23.(2023·北京·统考高考真题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若,且等腰梯形所在的平面、等腰三角形所在的平面与平面的夹角的正切值均为,则该五面体的所有棱长之和为( )
A.B.
C.D.
24.(2023•乙卷(理))已知为等腰直角三角形,为斜边,为等边三角形,若二面角为,则直线与平面所成角的正切值为
A.B.C.D.
25.(2022•浙江)如图,已知正三棱柱,,,分别是棱,上的点.记与所成的角为,与平面所成的角为,二面角的平面角为,则
A.B.C.D.
26.(多选题)(2022•新高考Ⅰ)已知正方体,则
A.直线与所成的角为
B.直线与所成的角为
C.直线与平面所成的角为
D.直线与平面所成的角为
知识点5:外接球、内切球问题
27.(2021•天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为,两个圆锥的高之比为,则这两个圆锥的体积之和为
A.B.C.D.
28.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为,半径为的球,其上点的纬度是指与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为,该卫星信号覆盖地球表面的表面积(单位:,则占地球表面积的百分比约为
A.B.C.D.
29.(2022•新高考Ⅰ)已知正四棱锥的侧棱长为,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是
A.,B.,C.,D.,
30.(2022•新高考Ⅱ)已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为
A.B.C.D.
31.(2021•甲卷(理))已知,,是半径为1的球的球面上的三个点,且,,则三棱锥的体积为
A.B.C.D.
32.(多选题)(2023•新高考Ⅰ)下列物体中,能够被整体放入棱长为1(单位:的正方体容器(容器壁厚度忽略不计)内的有
A.直径为的球体
B.所有棱长均为的四面体
C.底面直径为,高为的圆柱体
D.底面直径为,高为的圆柱体
33.(2023•甲卷(理))在正方体中,,分别为,的中点,则以为直径的球面与正方体每条棱的交点总数为 .
知识点6:立体几何中的范围与最值问题及定值问题
34.(多选题)(2021•新高考Ⅰ)在正三棱柱中,,点满足,其中,,,,则
A.当时,△的周长为定值
B.当时,三棱锥的体积为定值
C.当时,有且仅有一个点,使得
D.当时,有且仅有一个点,使得平面
35.(2021•上海)已知圆柱的底面圆半径为1,高为2,为上底面圆的一条直径,是下底面圆周上的一个动点,则的面积的取值范围为 .
相关试卷
这是一份2021-2023年高考数学真题分类汇编(全国通用)专题05立体几何(选择题、填空题)(文)(学生版+解析),共31页。试卷主要包含了某几何体的三视图如图所示(单位等内容,欢迎下载使用。
这是一份2021-2023年高考数学真题分类汇编(全国通用)专题05立体几何(选择题、填空题)(理)(学生版+解析),共39页。试卷主要包含了某几何体的三视图如图所示(单位等内容,欢迎下载使用。
这是一份【讲通练透】专题05 立体几何(选择题、填空题)(理)-2021-2023年高考真题分享汇编(全国通用),文件包含专题05立体几何选择题填空题理全国通用原卷版docx、专题05立体几何选择题填空题理全国通用解析版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。