专题12 数列(学生版)2021-2023年高考数学真题分类汇编(全国通用)
展开
这是一份专题12 数列(学生版)2021-2023年高考数学真题分类汇编(全国通用),共9页。试卷主要包含了记为等差数列的前项和,设等差数列的公差为,且,记为等差数列的前项和,已知,,记为等比数列的前项和等内容,欢迎下载使用。
知识点1:等差数列基本量运算
知识点2:等比数列基本量运算
知识点3:数列的实际应用
知识点4:数列的最值问题
知识点5:数列的递推问题(蛛网图问题)
知识点6:等差数列与等比数列的综合应用
知识点7:数列新定义问题
知识点8:数列通项与求和问题
知识点9:数列不等式
近三年高考真题
知识点1:等差数列基本量运算
1.(2023•甲卷(文))记为等差数列的前项和.若,,则
A.25B.22C.20D.15
2.(2022•乙卷(文))记为等差数列的前项和.若,则公差 .
3.(2022•上海)已知等差数列的公差不为零,为其前项和,若,则,2,,中不同的数值有 个.
4.(2023•新高考Ⅰ)设等差数列的公差为,且.令,记,分别为数列,的前项和.
(1)若,,求的通项公式;
(2)若为等差数列,且,求.
5.(2021•新高考Ⅱ)记是公差不为0的等差数列的前项和,若,.
(Ⅰ)求数列的通项公式;
(Ⅱ)求使成立的的最小值.
6.(2021•甲卷(理))已知数列的各项均为正数,记为的前项和,从下面①②③中选取两个作为条件,证明另外一个成立.
①数列是等差数列;②数列是等差数列;③.
注:若选择不同的组合分别解答,则按第一个解答计分.
7.(2023•乙卷(文))记为等差数列的前项和,已知,.
(1)求的通项公式;
(2)求数列的前项和.
8.(2021•甲卷(文))记为数列的前项和,已知,,且数列是等差数列,证明:是等差数列.
知识点2:等比数列基本量运算
9.(2022•乙卷(文))已知等比数列的前3项和为168,,则
A.14B.12C.6D.3
10.(2021•甲卷(文))记为等比数列的前项和.若,,则
A.7B.8C.9D.10
11.(2023•甲卷(文))记为等比数列的前项和.若,则的公比为 .
12.(2021•上海)已知为无穷等比数列,,的各项和为9,,则数列的各项和为 .
13.(2023•乙卷(理))已知为等比数列,,,则 .
14.(2021•甲卷(理))等比数列的公比为,前项和为.设甲:,乙:是递增数列,则
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
15.(2023•天津)已知为等比数列,为数列的前项和,,则的值为
A.3B.18C.54D.152
16.(2023•甲卷(理))已知等比数列中,,为前项和,,则
A.7B.9C.15D.30
17.(2022•上海)已知等比数列的前项和为,前项积为,则下列选项判断正确的是
A.若,则数列是递增数列
B.若,则数列是递增数列
C.若数列是递增数列,则
D.若数列是递增数列,则
18.(2023•新高考Ⅱ)记为等比数列的前项和,若,,则
A.120B.85C.D.
知识点3:数列的实际应用
19.(2022•新高考Ⅱ)图1是中国古代建筑中的举架结构,,,,是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图,其中,,,是举,,,,是相等的步,相邻桁的举步之比分别为,,,.已知,,成公差为0.1的等差数列,且直线的斜率为0.725,则
A.0.75B.0.8C.0.85D.0.9
20.(2022年全国乙卷)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列bn:b1=1+1α1,b2=1+1α1+1α2,b3=1+1α1+1α2+1α3,…,依此类推,其中αk∈N∗(k=1,2,⋯).则( )
A.b1
相关试卷
这是一份【讲通练透】专题12 数列-2021-2023年高考真题分享汇编(全国通用),文件包含专题12数列全国通用原卷版docx、专题12数列全国通用解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
这是一份专题13 不等式、推理与证明(学生版)2021-2023年高考数学真题分类汇编(全国通用),共3页。试卷主要包含了若,满足约束条件则的最大值是,若,满足约束条件则的最小值为等内容,欢迎下载使用。
这是一份专题11 平面向量(学生版)2021-2023年高考数学真题分类汇编(全国通用),共4页。试卷主要包含了在中,点在边上,,已知为坐标原点,点,,,,,则,正方形的边长是2,是的中点,则等内容,欢迎下载使用。