搜索
    上传资料 赚现金
    英语朗读宝

    2022-2023学年北京市朝阳区七年级(上)期末数学试卷

    2022-2023学年北京市朝阳区七年级(上)期末数学试卷第1页
    2022-2023学年北京市朝阳区七年级(上)期末数学试卷第2页
    2022-2023学年北京市朝阳区七年级(上)期末数学试卷第3页
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年北京市朝阳区七年级(上)期末数学试卷

    展开

    这是一份2022-2023学年北京市朝阳区七年级(上)期末数学试卷,共15页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
    1.(3分)党的二十大报告中指出,我国全社会研发经费支出从一万亿元增加到二万八千亿元,居世界第二位,研发人员总量居世界首位.将2800000000000用科学记数法表示为
    A.B.C.D.
    2.(3分)下列两个数互为相反数的是
    A.3和B.和C.和D.和
    3.(3分)单项式的系数和次数分别是
    A.,2B.,3C.,2D.,3
    4.(3分)有理数,在数轴上的对应点的位置如图所示.若,则下列结论一定成立的是
    A.B.C.D.
    5.(3分)我国古代数学著作《九章算术》中有这样一个问题:今有凫起南海,七日至北海.雁起北海,九日至南海.今凫雁俱起.问:何日相逢?其大意为:野鸭从南海飞到北海用7天,大雁从北海飞到南海用9天.它们从两地同时起飞,几天后相遇?设天后相遇,根据题意所列方程正确的是
    A.B.C.D.
    6.(3分)下列说法中,正确的是
    A.射线和射线是同一条射线
    B.如果,那么是线段的中点
    C.如果两个角互补,那么它们的角平分线所在直线的夹角为
    D.如果两个角是同一个角的补角,那么它们相等
    7.(3分)四个完全相同的正方体摆成如图的几何体,这个几何体
    A.从正面看和从左面看得到的平面图形相同
    B.从正面看和从上面看得到的平面图形相同
    C.从左面看和从上面看得到的平面图形相同
    D.从正面、左面、上面看得到的平面图形都不相同正面
    8.(3分)如图,把一个周长为定值的长方形分割为五个四边形,其中是正方形,,,,都是长方形,这五个四边形的周长分别用,,,,表示,则下列各式的值为定值的是
    A.B.C.D.
    二、填空题(本题共24分,每小题3分)
    9.(3分)北京冬季里某一天的气温为,这一天北京的温差是 .
    10.(3分)写出一个多项式,使得它与单项式的和是二次三项式: .
    11.(3分)列等式表示乘法交换律.
    12.(3分)比较大小: (选填“”“ ”“ ” .
    13.(3分)如图,货轮在航行过程中,发现灯塔在它的北偏西方向上,同时,海岛在它的东南方向上,则 .
    14.(3分)如图,,是线段的三等分点,是线段的中点,若,则 .
    15.(3分)要通过举反例说明“如果大于,那么的倒数小于的倒数”是错误的,请写出一组,的值: , .
    16.(3分)有下列一些生活中的现象:
    ①把原来弯曲的河道改直,河道长度变短;
    ②将两根细木条叠放在一起,两端恰好重合,如果中间存在缝隙,那么这两根细木条不可能都是直的;
    ③植树时,只要定出两个树坑的位置,就能使同一行的树坑在一条直线上;
    ④只用两颗钉子就能把一根细木条固定在墙上.
    其原理能用基本事实“两点确定一条直线”解释的为 .(只填序号)
    三、解答题(本题共52分,第17-25题,每小题5分,第26题7分)
    17.(5分)如图,平面上有,,,四点.按下列语句画图:
    (1)画直线;
    (2)画射线;
    (3)连接;
    (4)反向延长线段至点,使;
    (5)连接,与相交于点.
    18.(5分)计算:.
    19.(5分)计算:.
    20.(5分)计算:.
    21.(5分)解方程:.
    22.(5分)解方程.
    23.(5分)先化简,再求值:,其中.
    24.(5分)数学老师对同学们说:请你默想一个一位数,把这个数乘以2,加上5,再乘以50,加上1772,最后再减去你出生的年份.把运算的结果告诉我,我就能猜中你默想的那个一位数和你今年年)的年龄.
    注:年龄只考虑出生年份,不考虑月份,如2000年月出生,今年年)都是22岁.
    你知道数学老师是怎么做到的吗?
    (1)举例说明数学老师是如何猜中同学默想的一位数和今年年)的年龄的;
    (2)解释其中的原理.
    25.(5分)某网上商城在“双11”期间举行促销活动,有以下两种优惠方案:
    ①购物金额每满200元减20元;
    ②购物金额打95折.
    某人购物金额超过400元不足600元.通过计算发现,选择方案①比方案②便宜18元,这个人购物的金额是多少元?
    26.(7分)阅读材料,并回答问题
    对于某种满足乘法交换律的运算,如果存在一个确定的有理数,使得任意有理数和它进行这种运算后的结果都等于本身,那么叫做这种运算下的单位元.如果两个有理数进行这种运算后的结果等于单位元,那么这两个有理数互为逆元.
    由上述材料可知:
    (1)有理数在加法运算下的单位元是 ,在乘法运算下的单位元是 ;在加法运算下,3的逆元是 ,在乘法运算下,某个数没有逆元,这个数是 ;
    (2)在有理数范围内,我们定义一种新的运算:,例如.
    ①求在这种新的运算下的单位元;
    ②在这种新的运算下,求任意有理数的逆元(用含的代数式表示).
    2022-2023学年北京市朝阳区七年级(上)期末数学试卷
    参考答案与试题解析
    一、选择题(本题共24分,每小题3分)下面1-8题均有四个选项,其中符合题意的选项只有一个.
    1.(3分)党的二十大报告中指出,我国全社会研发经费支出从一万亿元增加到二万八千亿元,居世界第二位,研发人员总量居世界首位.将2800000000000用科学记数法表示为
    A.B.C.D.
    【解答】解:.
    故选:.
    2.(3分)下列两个数互为相反数的是
    A.3和B.和C.和D.和
    【解答】解:3与互为倒数,选项不符合题意;
    和相等,选项不符合题意;
    和互为相反数,选项符合题意;
    和相等,不符合题意,
    故选:.
    3.(3分)单项式的系数和次数分别是
    A.,2B.,3C.,2D.,3
    【解答】解:单项式的系数是,次数是3,
    故选:.
    4.(3分)有理数,在数轴上的对应点的位置如图所示.若,则下列结论一定成立的是
    A.B.C.D.
    【解答】解:由题意可得,①,,时,,,,;②,时,,,
    结论一定成立的是选项.
    故选:.
    5.(3分)我国古代数学著作《九章算术》中有这样一个问题:今有凫起南海,七日至北海.雁起北海,九日至南海.今凫雁俱起.问:何日相逢?其大意为:野鸭从南海飞到北海用7天,大雁从北海飞到南海用9天.它们从两地同时起飞,几天后相遇?设天后相遇,根据题意所列方程正确的是
    A.B.C.D.
    【解答】解:由题意可得,

    故选:.
    6.(3分)下列说法中,正确的是
    A.射线和射线是同一条射线
    B.如果,那么是线段的中点
    C.如果两个角互补,那么它们的角平分线所在直线的夹角为
    D.如果两个角是同一个角的补角,那么它们相等
    【解答】解:、射线和射线不是同一射线,其端点及延长的方向不一样,故不符合题意;
    、在同一条线段中,如果,则是线段的中点,故不符合题意;
    、在一平角中,如果一条直线把平角分成两个角,则这两个角互为补角,其角平分线所在直线的夹角为,故不符合题意;
    、如果两个角是同一个角的补角,那么它们相等,故符合题意.
    故选:.
    7.(3分)四个完全相同的正方体摆成如图的几何体,这个几何体
    A.从正面看和从左面看得到的平面图形相同
    B.从正面看和从上面看得到的平面图形相同
    C.从左面看和从上面看得到的平面图形相同
    D.从正面、左面、上面看得到的平面图形都不相同正面
    【解答】解:从正面看几何体得到的图形为:
    从左面看几何体得到的图形为:
    从上面看几何体得到的图形为:
    由此可知:从左面与从正面看到的形状图相同.
    故选:.
    8.(3分)如图,把一个周长为定值的长方形分割为五个四边形,其中是正方形,,,,都是长方形,这五个四边形的周长分别用,,,,表示,则下列各式的值为定值的是
    A.B.C.D.
    【解答】解:设大长方形的长为,宽为,正方形的边长为,长方形的长为,宽为,
    则为定值,
    长方形的宽为,长为,
    长方形的宽为,长为,
    长方形的长,宽为,
    不是定值,
    故不符合题意;
    是定值,
    故符合题意;
    不是定值,
    故不符合题意;
    ,不是定值,
    故不符合题意,
    故选:.
    二、填空题(本题共24分,每小题3分)
    9.(3分)北京冬季里某一天的气温为,这一天北京的温差是 .
    【解答】解:根据题意得:,
    则这一天的温差是.
    故答案为:.
    10.(3分)写出一个多项式,使得它与单项式的和是二次三项式: (答案不唯一) .
    【解答】解:多项式可以为:,
    是二次三项式.
    故答案为:(答案不唯一).
    11.(3分)列等式表示乘法交换律.
    【解答】解:乘法交换律:;
    故答案为:.
    12.(3分)比较大小: (选填“”“ ”“ ” .
    【解答】解:,

    ,即,
    故答案为:.
    13.(3分)如图,货轮在航行过程中,发现灯塔在它的北偏西方向上,同时,海岛在它的东南方向上,则 165 .
    【解答】解:海岛在货轮东南方向上,灯塔在货轮的北偏西方向上,

    故答案为:165.
    14.(3分)如图,,是线段的三等分点,是线段的中点,若,则 6 .
    【解答】解:是线段的中点,

    设,则,
    ,是线段的三等分点,

    ,即,

    解得,即,

    故答案为:6.
    15.(3分)要通过举反例说明“如果大于,那么的倒数小于的倒数”是错误的,请写出一组,的值: 1 , .
    【解答】解:若,,
    则的倒数是1,的倒数是,
    则的倒数大于的倒数,
    所以“如果大于,那么的倒数小于的倒数”是错误的,
    此时,,
    故答案为:1,.
    16.(3分)有下列一些生活中的现象:
    ①把原来弯曲的河道改直,河道长度变短;
    ②将两根细木条叠放在一起,两端恰好重合,如果中间存在缝隙,那么这两根细木条不可能都是直的;
    ③植树时,只要定出两个树坑的位置,就能使同一行的树坑在一条直线上;
    ④只用两颗钉子就能把一根细木条固定在墙上.
    其原理能用基本事实“两点确定一条直线”解释的为 ②,③,④ .(只填序号)
    【解答】解:有下列一些生活中的现象:
    ①把原来弯曲的河道改直,河道长度变短;
    ②将两根细木条叠放在一起,两端恰好重合,如果中间存在缝隙,那么这两根细木条不可能都是直的;
    ③植树时,只要定出两个树坑的位置,就能使同一行的树坑在一条直线上;
    ④只用两颗钉子就能把一根细木条固定在墙上.
    其原理能用基本事实“两点确定一条直线”解释的为②,③,④.
    故答案为:②,③,④.
    三、解答题(本题共52分,第17-25题,每小题5分,第26题7分)
    17.(5分)如图,平面上有,,,四点.按下列语句画图:
    (1)画直线;
    (2)画射线;
    (3)连接;
    (4)反向延长线段至点,使;
    (5)连接,与相交于点.
    【解答】解:如图:
    直线,射线,线段,线段,线段,即为所求.
    18.(5分)计算:.
    【解答】解:

    19.(5分)计算:.
    【解答】解:

    20.(5分)计算:.
    【解答】解:原式

    21.(5分)解方程:.
    【解答】解:去分母得:,
    去括号得:,
    移项得:,
    合并同类项得:,
    解得:.
    22.(5分)解方程.
    【解答】解:方程整理得:,
    即,
    移项得:,
    合并同类项得:.
    23.(5分)先化简,再求值:,其中.
    【解答】解:


    原式.
    24.(5分)数学老师对同学们说:请你默想一个一位数,把这个数乘以2,加上5,再乘以50,加上1772,最后再减去你出生的年份.把运算的结果告诉我,我就能猜中你默想的那个一位数和你今年年)的年龄.
    注:年龄只考虑出生年份,不考虑月份,如2000年月出生,今年年)都是22岁.
    你知道数学老师是怎么做到的吗?
    (1)举例说明数学老师是如何猜中同学默想的一位数和今年年)的年龄的;
    (2)解释其中的原理.
    【解答】解:(1)假如小明2010年出生,默想的一位数是6,

    结果中百位数字即是小明默想的一位数,后面的两位数是小明的年龄,
    小明默想的一位数是6,小明今年年)的年龄为12岁;
    (2)设默想的一位数是,小明的出生的年份是,
    根据题意,得

    结果的百位数字是,后两位数字是,即小明的年龄.
    25.(5分)某网上商城在“双11”期间举行促销活动,有以下两种优惠方案:
    ①购物金额每满200元减20元;
    ②购物金额打95折.
    某人购物金额超过400元不足600元.通过计算发现,选择方案①比方案②便宜18元,这个人购物的金额是多少元?
    【解答】解:设这个人购物的金额是元,
    由题意得:,
    解得:,
    这个人购物的金额是440元,
    答:这个人购物的金额是440元.
    26.(7分)阅读材料,并回答问题
    对于某种满足乘法交换律的运算,如果存在一个确定的有理数,使得任意有理数和它进行这种运算后的结果都等于本身,那么叫做这种运算下的单位元.如果两个有理数进行这种运算后的结果等于单位元,那么这两个有理数互为逆元.
    由上述材料可知:
    (1)有理数在加法运算下的单位元是 0 ,在乘法运算下的单位元是 ;在加法运算下,3的逆元是 ,在乘法运算下,某个数没有逆元,这个数是 ;
    (2)在有理数范围内,我们定义一种新的运算:,例如.
    ①求在这种新的运算下的单位元;
    ②在这种新的运算下,求任意有理数的逆元(用含的代数式表示).
    【解答】解:(1)加任何数都等与它本身,
    有理数在加法运算下的单位元是0,
    乘任何数都等与它本身,
    乘法运算下的单位元是1,
    在加法运算下,3的逆元是,
    在乘法运算下,某个数没有逆元,这个数是0,
    故答案为:0、1、、0;
    (2)①设是新的运算下的单位元,
    根据题意,得,
    解得,
    在这种新的运算下的单位元是0;
    ②设的逆元是,

    解得,
    任意有理数的逆元是.
    声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2023/12/14 14:00:01;用户:18210079211;邮箱:18210079211;学号:32336482

    相关试卷

    2023-2024学年北京市朝阳区七年级(上)期末数学试卷(含详细答案解析):

    这是一份2023-2024学年北京市朝阳区七年级(上)期末数学试卷(含详细答案解析),共16页。试卷主要包含了选择题,填空题,解答题,田凹应弃之”判断也可.等内容,欢迎下载使用。

    2023-2024学年北京市朝阳区七年级(上)期末数学试卷(含解析):

    这是一份2023-2024学年北京市朝阳区七年级(上)期末数学试卷(含解析),共16页。试卷主要包含了选择题,填空题,解答题,田凹应弃之”判断也可.等内容,欢迎下载使用。

    2018-2019学年北京市朝阳区七年级(上)期末数学试卷(含答案解析):

    这是一份2018-2019学年北京市朝阳区七年级(上)期末数学试卷(含答案解析),共16页。试卷主要包含了45×108B,【答案】C,5×107,,【答案】A,【答案】B,【答案】D,【答案】−2等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map