![专题18 与平行四边形(含矩形菱形正方形)有关解答题精炼(原卷版) 第1页](http://img-preview.51jiaoxi.com/2/3/15118504/1-1703477328057/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题18 与平行四边形(含矩形菱形正方形)有关解答题精炼(原卷版) 第2页](http://img-preview.51jiaoxi.com/2/3/15118504/1-1703477328078/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题18 与平行四边形(含矩形菱形正方形)有关解答题精炼(原卷版) 第3页](http://img-preview.51jiaoxi.com/2/3/15118504/1-1703477328098/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题18 与平行四边形(含矩形菱形正方形)有关解答题精炼(解析版) 第1页](http://img-preview.51jiaoxi.com/2/3/15118504/0-1703477325719/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题18 与平行四边形(含矩形菱形正方形)有关解答题精炼(解析版) 第2页](http://img-preview.51jiaoxi.com/2/3/15118504/0-1703477325736/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题18 与平行四边形(含矩形菱形正方形)有关解答题精炼(解析版) 第3页](http://img-preview.51jiaoxi.com/2/3/15118504/0-1703477325784/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2023年中考数学以三种题型出现必考压轴题27个小微专题精炼
- 专题16 与平行四边形(含矩形菱形正方形)有关选择题精炼-2023年中考数学以三种题型出现必考压轴题27个小微专题精炼 试卷 0 次下载
- 专题17 与平行四边形(含矩形菱形正方形)有关填空题精炼-2023年中考数学以三种题型出现必考压轴题27个小微专题精炼 试卷 0 次下载
- 专题19 圆的求值与证明类必考的选择题精炼-2023年中考数学以三种题型出现必考压轴题27个小微专题精炼 试卷 0 次下载
- 专题20 圆的求值与证明类必考的填空题精炼-2023年中考数学以三种题型出现必考压轴题27个小微专题精炼 试卷 0 次下载
- 专题21 圆的求值与证明类必考的解答题精炼-2023年中考数学以三种题型出现必考压轴题27个小微专题精炼 试卷 0 次下载
专题18 与平行四边形(含矩形菱形正方形)有关解答题精炼-2023年中考数学以三种题型出现必考压轴题27个小微专题精炼
展开
这是一份专题18 与平行四边形(含矩形菱形正方形)有关解答题精炼-2023年中考数学以三种题型出现必考压轴题27个小微专题精炼,文件包含专题18与平行四边形含矩形菱形正方形有关解答题精炼原卷版docx、专题18与平行四边形含矩形菱形正方形有关解答题精炼解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
1. 如图,在四边形ABCD中,ABCD,AC平分∠DAB,AB=2CD,E为AB中点,连接CE.
(1)求证:四边形AECD为菱形;
(2)若∠D=120°,DC=2,求△ABC的面积.
【答案】(1)见详解 (2)△ABC面积为
【解析】【分析】(1)由题意易得CD=AE,∠DAC=∠EAC=∠DCA,则有四边形AECD是平行四边形,然后问题可求证;
(2)由(1)及题意易得,则有△BCE是等边三角形,然后可得△ACB是直角三角形,则,进而问题可求解.
【小问1详解】
证明:∵ABCD,AC平分∠DAB,
∴∠DAC=∠EAC,∠EAC=∠DCA,
∴∠DAC=∠DCA,
∴DA=DC,
∵AB=2CD,E为AB中点,
∴,
∵,
∴四边形AECD是平行四边形,
∵DA=DC,
∴四边形AECD是菱形;
【小问2详解】
解:由(1)知:,
∵∠D=120°,
∴,
∵E为AB中点,
∴,
∴△BCE是等边三角形,
∴,,
∴,
∴,
∴.
【点睛】本题主要考查菱形的性质与判定、等边三角形的性质及含30°直角三角形的性质,熟练掌握菱形的性质与判定、等边三角形的性质及含30°直角三角形的性质是解题的关键.
2. 在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交CE的延长线于点F.
(1)求证:四边形ADBF是菱形;
(2)若AB=8,菱形ADBF的面积为40,求AC的长.
【答案】(1)见解析 (2)10
【解析】【分析】(1)证△AEF≌△DEC(AAS),得△AEF≌△DEC(AAS),再证四边形ADBF是平行四边形,然后由直角三角形斜边中线等于斜边的一半得证AD=BD=BC,即可由菱形判定定理得出结论;
(2)连接DF交AB于O,由菱形面积公式S菱形ADBF==40,求得OD长,再由菱形性质得OA=OB,证得OD是三角形的中位线,由中位线性质求解可.
【小问1详解】
证明:∵E是AD的中点,
∴AE=DE
∵AFBC,
∴∠AFE=∠DCE,
在△AEF和△DEB中,
,
∴△AEF≌△DEC(AAS),
∴AF=CD,
∵D是BC的中点,
∴CD=BD,
∴AF=BD,
∴四边形ADBF是平行四边形,
∵∠BAC=90°,
∵D是BC的中点,
∴AD=BD=BC,
∴四边形ADBF是菱形;
【小问2详解】
解:连接DF交AB于O,如图
由(1)知:四边形ADBF是菱形,
∴AB⊥DF,OA=AB=×8=4, S菱形ADBF==40,
∴=40,
∴DF=10,
∴OD=5,
∵四边形ADBF是菱形,
∴O是AB的中点,
∵D是BC的中点,
∴OD是△BAC的中位线,
∴AC=2OD=2×5=10.
答:AC的长为10.
【点睛】本题考查平行四边形的判定,菱形的判定与性质,三角形全等的判定与性质,直角三角形斜边中线的性质,三角形中位线的性质,熟练掌握菱形的判定与性质是解题的关键.
3. 如图,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD.
(1)求证:四边形BCED是平行四边形;
(2)若DA=DB=2,csA=,求点B到点E的距离.
【答案】见解析。
【分析】(1)根据平行四边形的性质得到AD=BC,AD∥BC,等量代换得到DE=BC,DE∥BC,于是得到四边形BCED是平行四边形;
(2)连接BE,根据已知条件得到AD=BD=DE=2,根据直角三角形的判定定理得到∠ABE=90°,AE=4,解直角三角形即可得到结论.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∵DE=AD,
∴DE=BC,DE∥BC,
∴四边形BCED是平行四边形;
(2)解:连接BE,
∵DA=DB=2,DE=AD,
∴AD=BD=DE=2,
∴∠ABE=90°,AE=4,
∵csA=,
∴AB=1,
∴BE==.
【点评】本题考查了平行四边形的判定和性质,直角三角形的判定和性质,三角函数的定义,证得∠ABE=90°是解题的关键.
4. 如图,在中,于点D,E,F分别是的中点,O是的中点,的延长线交线段于点G,连结,,.
(1)求证:四边形是平行四边形.
(2)当,时,求的长.
【答案】(1)见解析 (2)
【解析】【分析】(1)根据E,F分别是,的中点,得出,根据平行线的性质,得出,,结合O是的中点,利用“AAS”得出,得出,即可证明是平行四边形;
(2)根据,E是中点,得出,即可得出,即,根据,得出CD=2,根据勾股定理得出AC的长,即可得出DE,根据平行四边形的性,得出.
详解】(1)(1)∵E,F分别是,的中点,
∴,
∴,,
∵O是的中点,
∴,
∴,
∴,
∴四边形是平行四边形.
(2)∵,E是中点,
∴,
∴,
∴,
∴,
∵,
∴,
∴.
∵四边形DEFG为平行四边形,
∴.
【点睛】本题主要考查了平行线四边形的判定和性质,勾股定理,直角三角形斜边上的中线,三角形全等的判定和性质,三角函数的定义,平行线的性质,中位线的性质,根据题意证明
,是解题的关键.
5. 如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.
(1)求证:△ABE≌△CDF;
(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.
【答案】见解析。
【分析】(1)由矩形的性质得出∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,由HL证明Rt△ABE≌Rt△CDF即可;
(2)由全等三角形的性质得出BE=DF,得出CE=AF,由CE∥AF,证出四边形AECF是平行四边形,再由AC⊥EF,即可得出四边形AECF是菱形.
【解答】(1)证明:∵四边形ABCD是矩形,
∴∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,
在Rt△ABE和Rt△CDF中,,
∴Rt△ABE≌Rt△CDF(HL);
(2)当AC⊥EF时,四边形AECF是菱形,理由如下:
∵△ABE≌△CDF,
∴BE=DF,
∵BC=AD,
∴CE=AF,
∵CE∥AF,
∴四边形AECF是平行四边形,
又∵AC⊥EF,
∴四边形AECF是菱形.
【点评】本题考查了矩形的性质、全等三角形的判定与性质、菱形的判定、平行四边形的判定;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.
6. 如图,在矩形ABCD中,AB=4,BC=3,AF平分∠DAC,分别交DC,BC的延长线于点E,F;连接DF,过点A作AH∥DF,分别交BD,BF于点G,H.
(1)求DE的长;
(2)求证:∠1=∠DFC.
【答案】见解析
【分析】(1)由AD∥CF,AF平分∠DAC,可得∠FAC=∠AFC,得出AC=CF=5,可证出△ADE∽△FCE,则,可求出DE长;
(2)由△ADG∽△HBG,可求出DG,则,可得EG∥BC,则∠1=∠AHC,根据DF∥AH,可得∠AHC=∠DFC,结论得证.
【解答】(1)解:∵矩形ABCD中,AD∥CF,
∴∠DAF=∠ACF,
∵AF平分∠DAC,
∴∠DAF=∠CAF,
∴∠FAC=∠AFC,
∴AC=CF,
∵AB=4,BC=3,
∴==5,
∴CF=5,
∵AD∥CF,
∴△ADE∽△FCE,
∴,
设DE=x,则,
解得x=
∴;
(2)∵AD∥FH,AF∥DH,
∴四边形ADFH是平行四边形,
∴AD=FH=3,
∴CH=2,BH=5,
∵AD∥BH,
∴△ADG∽△HBG,
∴,
∴,
∴DG=,
∵DE=,
∴=,
∴EG∥BC,
∴∠1=∠AHC,
又∵DF∥AH,
∴∠AHC=∠DFC,
∠1=∠DFC.
7. 小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.
若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.
【答案】赞成小洁的说法,补充证明见解析
【解析】【分析】先由OB=OD,证明四边形是平行四边形,再利用对角线互相垂直,从而可得结论.
【详解】赞成小洁的说法,补充
证明:∵OB=OD,
四边形是平行四边形,
AC⊥BD,
∴四边形ABCD是菱形.
【点睛】本题考查的是平行四边形的判定,菱形的判定,掌握“菱形的判定方法”是解本题的关键.
8. 如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.
(1)求证:AE=BF;
(2)若点E恰好是AD的中点,AB=2,求BD的值.
【答案】见解析。
【解析】(1)由“AAS”可证△AEB≌△BFC,可得AE=BF;
(2)由线段垂直平分线的性质可得BD=AB=2.
【解答】(1)证明:四边形ABCD是菱形
∴AB=BC,AD∥BC
∴∠A=∠CBF
∵BE⊥AD、CF⊥AB
∴∠AEB=∠BFC=90°
∴△AEB≌△BFC(AAS)
∴AE=BF
(2)∵E是AD中点,且BE⊥AD
∴直线BE为AD的垂直平分线
∴BD=AB=2
【点评】本题考查了菱形的性质,全等三角形的判定和性质,线段垂直平分线的性质,熟练运用菱形的性质是本题的关键.
9. 在菱形ABCD中,∠MDN的两边分别与AB,BC交于点E,F,与对角线AC交于点G,H,已知∠MDN=∠BAD=60°,AC=6.
(1)如图1,当DE⊥AB,DF⊥BC时,
①求证:△ADE≌△CDF;②求线段GH的长;
(2)如图2,当∠MDN绕点D旋转时,线段AG,GH,HC的长度都在变化.设线段AG=m,GH=p,HC=n,试探究p与mn的等量关系,并说明理由.
【答案】见解析。
【解析】(1)①利用AAS直接得出结论;
②先判断出∠ADE+∠BAD=60°,求出∠ADE=∠CDF=30°,进而判断出DG=GH=CH,即可得出结论;
(2)先判断出C'G=CH=p,再求出AP=m,PG=m,进而得出PC'=n﹣m,进而得出p2=(n﹣m)2+(m)2①,再判断出m+n+p=6②,联立即可得出结论.
【解答】(1)①∵DE⊥AB,DF⊥BC,
∴∠AED=∠CFD=90°
∵四边形ABCD是菱形,
∴∠BAD=∠BCD,AD=AC,
∴△AED≌△CFD(AAS);
②∵四边形ABCD是菱形,
∴AB∥DC,
∴∠ADC+∠BAD=180°,
∵∠BAD=60°,
∴∠ADC=120°,
∵∠MDN=60°,
∴∠ADE+∠CDF=60°,
由①知,△AED≌△CFD,
∴∠ADE=∠CDF,
∴∠ADE=∠CDF=30°,
∵AC是菱形ABCD的对角线,
∴∠DAC=∠ACD=30°,
∴∠DGH=∠DHG=60°=∠HDG,
∴DG=GH=CH=AC=2;
(2)如图
将△CDH绕点D顺时针旋转120°得到△ADC',
∴∠DAC'=∠DCH=30°,C'D=DH,AC'=CH=n,∠ADC'=∠CDH,
∴∠GDC'=∠ADC'+∠ADG=120°﹣∠MDN=60°=∠MDN,
连接C'G,
∴△C'DG≌△HDG(ASA),
∴C'G=GH=p,
过点G作GP⊥AC'于P,
在Rt△APG中,∠PAG=∠C'AD+∠CAD=60°,
∴AP=AG=m,PG=m,
在Rt△PC'G中,PC'=AC'﹣AP=CH﹣AP=n﹣m,
根据勾股定理得,C'G2=PC'2+PG2,
∴p2=(n﹣m)2+(m)2①,
∵AC=6,
∴m+n+p=6②,
联立①②整理得,mn=12﹣4p.
10. 如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.
【答案】见解析。
【分析】根据正方形的性质可得AB=AD,再利用同角的余角相等求出∠BAF=∠ADG,再利用“角角边”证明△BAF和△ADG全等,根据全等三角形对应边相等可得BF=AG,根据线段的和与差可得结论.
【解答】证明:∵四边形ABCD是正方形,
∴AB=AD,∠DAB=90°,
∵BF⊥AE,DG⊥AE,
∴∠AFB=∠AGD=∠ADG+∠DAG=90°,
∵∠DAG+∠BAF=90°,
∴∠ADG=∠BAF,
在△BAF和△ADG中,
∵,
∴△BAF≌△ADG(AAS),
∴BF=AG,AF=DG,
∵AG=AF+FG,
∴BF=AG=DG+FG,
∴BF﹣DG=FG.
【点评】本题考查了正方形的性质,全等三角形的判定与性质,证明△BAF≌△ADG是解题的关键.
11. 如图,在边长为l的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.
(1)求证:△PDE≌△QCE;
(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,
①求证:四边形AFEP是平行四边形;
②请判断四边形AFEP是否为菱形,并说明理由.
【答案】见解析。
【分析】(1)由四边形ABCD是正方形知∠D=∠ECQ=90°,由E是CD的中点知DE=CE,结合∠DEP=∠CEQ即可得证;
(2)①由PB=PQ知∠PBQ=∠Q,结合AD∥BC得∠APB=∠PBQ=∠Q=∠EPD,由△PDE≌△QCE知PE=QE,再由EF∥BQ知PF=BF,根据Rt△PAB中AF=PF=BF知∠APF=∠PAF,从而得∠PAF=∠EPD,据此即可证得PE∥AF,从而得证;
②设AP=x,则PD=1﹣x,若四边形AFEP是菱形,则PE=PA=x,由PD2+DE2=PE2得关于x的方程,解之求得x的值,从而得出四边形AFEP为菱形的情况.
【解答】(1)∵四边形ABCD是正方形,
∴∠D=∠ECQ=90°,
∵E是CD的中点,
∴DE=CE,
又∵∠DEP=∠CEQ,
∴△PDE≌△QCE(ASA);
(2)①∵PB=PQ,
∴∠PBQ=∠Q,
∵AD∥BC,
∴∠APB=∠PBQ=∠Q=∠EPD,
∵△PDE≌△QCE,
∴PE=QE,
∵EF∥BQ,
∴PF=BF,
∴在Rt△PAB中,AF=PF=BF,
∴∠APF=∠PAF,
∴∠PAF=∠EPD,
∴PE∥AF,
∵EF∥BQ∥AD,
∴四边形AFEP是平行四边形;
②当AP=时,四边形AFEP是菱形.
设AP=x,则PD=1﹣x,
若四边形AFEP是菱形,则PE=PA=x,
∵CD=1,E是CD中点,
∴DE=,
在Rt△PDE中,由PD2+DE2=PE2得(1﹣x)2+()2=x2,
解得x=,
即当AP=时,四边形AFEP是菱形.
【点评】本题是四边形的综合问题,解题的关键是掌握正方形的性质、全等三角形的判定与性质、直角三角形的性质、平行四边形与菱形的判定、性质等知识点.
12. (1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.
①求证:DQ=AE;
②推断:的值为 ;
(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;
(3)拓展应用:在(2)的条件下,连接CP,当k=时,若tan∠CGP=,GF=2,求CP的长.
【答案】见解析。
【解析】(1)①证明:∵四边形ABCD是正方形,
∴AB=DA,∠ABE=90°=∠DAQ.
∴∠QAO+∠OAD=90°.
∵AE⊥DH,
∴∠ADO+∠OAD=90°.
∴∠QAO=∠ADO.
∴△ABE≌△DAQ(ASA),
∴AE=DQ.
②解:结论:=1.
理由:∵DQ⊥AE,FG⊥AE,
∴DQ∥FG,
∵FQ∥DG,
∴四边形DQFG是平行四边形,
∴FG=DQ,
∵AE=DQ,
∴FG=AE,
∴=1.
故答案为1.
(2)解:结论:=k.
理由:如图2中,作GM⊥AB于M.
∵AE⊥GF,
∴∠AOF=∠GMF=∠ABE=90°,
∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,
∴∠BAE=∠FGM,
∴△ABE∽△GMF,
∴=,
∵∠AMG=∠D=∠DAM=90°,
∴四边形AMGD是矩形,
∴GM=AD,
∴===k.
(3)解:如图2﹣1中,作PM⊥BC交BC的延长线于M.
∵FB∥GC,FE∥GP,
∴∠CGP=∠BFE,
∴tan∠CGP=tan∠BFE==,
∴可以假设BE=3k,BF=4k,EF=AF=5k,
∵=,FG=2,
∴AE=3,
∴(3k)2+(9k)2=(3)2,
∴K=1或﹣1(舍弃),
∴BE=3,AB=9,
∵BC:AB=2:3,
∴BC=6,
∴BE=CE=3,AD=PE=BC=6,
∵∠BEF=∠FEP=∠PME=90°,
∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,
∴∠FEB=∠EPM,
∴△FBE∽△EMP,
∴==,
∴==,
∴EM=,PM=,
∴CM=EM=EC=﹣3=,
∴PC==.
13. 如图,在四边形中,点E,C为对角线上的两点,.连接.
(1)求证:四边形是平行四边形;
(2)若,求证:.
【答案】(1)证明见解析 (2)证明见解析
【解析】【分析】(1)由可得,证明,则,,进而结论得证;
(2)由,可知,,则,证明,进而结论得证.
【详解】(1)证明:∵,
∴,
∴,
在和中,
∵,
∴,
∴,
∴,
又∵,
∴四边形是平行四边形.
(2)证明:由(1)知,,
∴,
∵,
∴,,
∴,
在和中,
∵,
∴,
∴.
【点睛】本题考查了全等三角形的判定与性质,平行四边形的判定.解题的关键在于熟练掌握全等三角形的判定与性质,平行四边形的判定.
14. 已知矩形的对角线相交于点O,点E是边上一点,连接,且.
(1)如图1,求证:;
(2)如图2,设与相交于点F,与相交于点H,过点D作的平行线交的延长线于点G,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(除外),使写出的每个三角形的面积都与的面积相等.
【答案】(1)见解析 (2)、、、
【解析】【分析】(1)利用SSS证明两个三角形全等即可;
(2)先证明Rt△ABE≌Rt△DCE得到AE=DE,则,根据三线合一定理证明∴OE⊥AD, 推出,得到,即可证明由,得到∠OBF=∠OCH,,证明△BOF≌△COH,即可证明,则,即可推出,最后证明,即可得到;
【详解】(1)证明:∵四边形是矩形,
∴与相等且互相平分,
∴,
∵,,
∴(SSS);
(2)∵四边形ABCD是矩形,
∴AB=CD,∠BAE=∠CDE=90°,OA=OD=OB=OC,
又∵BE=CE,
∴Rt△ABE≌Rt△DCE(HL)
∴AE=DE,
∴,
∵OA=OD,AE=DE,
∴OE⊥AD,
∴,
∴,
∴,
∴;
∵,
∴∠OBF=∠OCH,,
又∵∠BOF=∠COH,OB=OC,
∴△BOF≌△COH(ASA),
∴,
∴,
∴,
∴,
∴;
∵,
∴∠AFE=∠DGE,∠EAF=∠EDG,
又∵AE=DE,
∴,
∴;
综上所述,、、、这4个三角形的面积与△AEF的面积相等.
【点睛】本题主要考查了全等三角形的性质与判定,三线合一定理,矩形的性质,平行线的性质与判定等等,熟知全等三角形的性质与判定条件是解题的关键.
15. 华师版八年级下册数学教材第121页习题19.3第2小题及参考答案.
某数学兴趣小组在完成了以上解答后,决定对该问题进一步探究
(1)【问题探究】如图,在正方形ABCD中,点E、F、G、H分别在线段AB、BC、CD、DA上,且.试猜想的值,并证明你的猜想.
(2)【知识迁移】如图,在矩形ABCD中,,,点E、F、G、H分别在线段AB、BC、CD、DA上,且.则______.
(3)【拓展应用】如图,在四边形ABCD中,,,,点E、F分别在线段AB、AD上,且.求的值.
【答案】(1)1;证明见解析 (2) (3)
【解析】【分析】(1)过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N,利用正方形ABCD,AB=AD,∠ABM=∠BAD=∠ADN=90°求证△ABM≌△ADN即可.
(2)过点A作AM∥HF交BC于点M,作AN∥EC交CD延长线于点N,利用在矩形ABCD中,BC=AD,∠ABM=∠BAD=∠ADN=90°,求证△ABM∽△ADN.再根据其对应边成比例,将已知数值代入即可.
(3)先证是等边三角形,设,过点,垂足为,交于点,则,在中,利用勾股定理求得的长,然后证,利用相似三角形的对应边对应成比例即可求解.
【小问1详解】
,理由为:
过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N,
∵四边形ABCD是正方形,
∴AB∥CD,AD∥BC,
∴四边形AMFH是平行四边形,四边形AEGN是平行四边形,
∴AM=HF,AN=EG,
在正方形ABCD中,AB=AD,∠ABM=∠BAD=∠ADN=90°
∵EG⊥FH,
∴∠NAM=90°,
∴∠BAM=∠DAN,
在△ABM和△ADN中,∠BAM=∠DAN,AB=AD,∠ABM=∠ADN
∴△ABM≌△ADN
∴AM=AN,即EG=FH,
∴;
【小问2详解】
解:过点A作AM∥HF交BC于点M,作AN∥EC交CD的延长线于点N,
∵四边形ABCD是矩形,
∴AB∥CD,AD∥BC,
∴四边形AMFH是平行四边形,四边形AEGN是平行四边形,
∴AM=HF,AN=EG,
在矩形ABCD中,BC=AD,∠ABM=∠BAD=∠ADN=90°,
∵EG⊥FH,
∴∠NAM=90°,
∴∠BAM=∠DAN.
∴△ABM∽△ADN,
∴,
∵,,AM=HF,AN=EG,
∴,
∴;
故答案为:
【小问3详解】
解:∵,,
∴是等边三角形,
∴设,
过点,垂足为,交于点,则,
在中,,
∵,,
∴,,
又∵,
∴,
∵,,
∴,
∴,
∴,即.
【点睛】此题主要考查学生对相似三角形的判定与性质,全等三角形的判定与性质,勾股定理等知识点的理解和掌握,综合性较强,难度较大,是一道难题.
小惠:
证明:∵AC⊥BD,OB=OD,
∴AC垂直平分BD.
∴AB=AD,CB=CD,
∴四边形ABCD是菱形.
小洁:
这个题目还缺少条件,需要补充一个条件才能证明.
2.如图,在正方形ABCD中,.求证:.
证明:设CE与DF交于点O,
∵四边形ABCD是正方形,
∴,.
∴.
∵,
∴.
∴.
∴.
∴.
∴.
相关试卷
这是一份专题21 圆的求值与证明类必考的解答题精炼-2023年中考数学以三种题型出现必考压轴题27个小微专题精炼,文件包含专题21圆的求值与证明类必考的解答题精炼原卷版docx、专题21圆的求值与证明类必考的解答题精炼解析版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
这是一份专题17 与平行四边形(含矩形菱形正方形)有关填空题精炼-2023年中考数学以三种题型出现必考压轴题27个小微专题精炼,文件包含专题17与平行四边形含矩形菱形正方形有关填空题精炼原卷版docx、专题17与平行四边形含矩形菱形正方形有关填空题精炼解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份专题16 与平行四边形(含矩形菱形正方形)有关选择题精炼-2023年中考数学以三种题型出现必考压轴题27个小微专题精炼,文件包含专题16与平行四边形含矩形菱形正方形有关选择题精炼原卷版docx、专题16与平行四边形含矩形菱形正方形有关选择题精炼解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。