- 浙教版-2023年八年级上册数学举一反三系列 专题1.2 三角形内角和定理的运用【八大题型】(学生版+教师版) 试卷 1 次下载
- 浙教版-2023年八年级上册数学举一反三系列 专题1.3 三角形的外角【十大题型】(学生版+教师版) 试卷 1 次下载
- 浙教版-2023年八年级上册数学举一反三系列 专题1.5 全等三角形的判定【八大题型】(学生版+教师版) 试卷 2 次下载
- 浙教版-2023年八年级上册数学举一反三系列 专题1.6 角的平分线的性质【七大题型】(学生版+教师版) 试卷 1 次下载
- 浙教版-2023年八年级上册数学举一反三系列 专题1.7 全等三角形中的经典模型【六大题型】(学生版+教师版) 试卷 1 次下载
初中数学浙教版八年级上册第1章 三角形的初步知识1.4 全等三角形随堂练习题
展开TOC \ "1-3" \t "正文,1" \h
TOC \ "1-1" \h \u
\l "_Tc15769" 【题型1 全等图形的概念】 PAGEREF _Tc15769 \h 1
\l "_Tc13785" 【题型2 全等三角形的对应元素判断】 PAGEREF _Tc13785 \h 2
\l "_Tc26035" 【题型3 全等三角形的性质(求长度)】 PAGEREF _Tc26035 \h 3
\l "_Tc9733" 【题型4 全等三角形的性质(求角度)】 PAGEREF _Tc9733 \h 4
\l "_Tc26720" 【题型5 全等三角形的性质(判断结论)】 PAGEREF _Tc26720 \h 5
\l "_Tc32398" 【题型6 全等三角形的性质(探究角度之间的关系)】 PAGEREF _Tc32398 \h 6
\l "_Tc11956" 【题型7 全等三角形的性质(动点问题)】 PAGEREF _Tc11956 \h 7
\l "_Tc26337" 【题型8 全等三角形的性质(证明题)】 PAGEREF _Tc26337 \h 8
【知识点1 全等图形的概念】
能完全重合的图形叫做全等图形.
【知识点2 全等图形的性质】
两个图形全等,它们的形状相同,大小相同.
【题型1 全等图形的概念】
【例1】(2022春•偃师市期末)下列说法不正确的是( )
A.如果两个图形全等,那么它们的形状和大小一定相同
B.图形全等,只与形状、大小有关,而与它们的位置无关
C.全等图形的面积相等,面积相等的两个图形是全等图形
D.全等三角形的对应边相等,对应角相等
【变式1-1】(2021秋•思南县期中)有下列说法,其中正确的有( )
①两个等边三角形一定能完全重合;
②如果两个图形是全等图形,那么它们的形状和大小一定相同;
③两个等腰三角形一定是全等图形;
④面积相等的两个图形一定是全等图形.
A.1个B.2个C.3个D.4个
【变式1-2】(2021秋•蔡甸区期中)如图,有①~⑤5个条形方格图,每个小方格的边长均为1,则②~⑤中由实线围成的图形与①中由实线围成的图形全等的有( )
A.②③④B.③④⑤C.②④⑤D.②③⑤
【变式1-3】(2021春•宁德期末)在如图所示的网格图中,每个小正方形的边长都为1.沿着图中的虚线,可以将该图形分割成2个全等的图形.在所有的分割方案中,最长分割线的长度等于 .
【知识点3 全等三角形的性质】
全等三角形的对应边相等,对应角相等.(另外全等三角形的周长、面积相等,对应边上的中线、角平分线、
高线均相等)
【题型2 全等三角形的对应元素判断】
【例2】(2021秋•南沙区期末)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是( )
A.115°B.65°C.40°D.25°
【变式2-1】(2021秋•大连期中)如图,△ABN≌△ACM,∠B和∠C是对应角,AB和AC是对应边,其它对应边及对应角正确的是( )
A.∠ANB和∠AMC是对应角B.∠BAN和∠CAB是对应角
C.AM和BM是对应边D.BN和CN是对应边
【变式2-2】(2021春•泰兴市期末)边长都为整数的△ABC和△DEF全等,AB与DE是对应边,AB=2,BC=4,若△DEF的周长为奇数,则DF的值为( )
A.3B.4C.3或5D.3或4或5
【变式2-3】(2021秋•鲁甸县期末)如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x﹣2,2y﹣1,若这两个三角形全等,则x+y= .
【题型3 全等三角形的性质(求长度)】
【例3】(2021秋•青田县期末)如图,已知△ABC≌△DEF,B,E,C,F在同一条直线上.若BF=8cm,BE=2cm,则CE的长度( )cm.
A.5B.4C.3D.2
【变式3-1】(2022秋•巴南区期末)如图,△ABC≌△BDE,AB⊥BD,AB=BD,AC=4,DE=3,CE的长为( )
A.1B.2C.3D.4
【变式3-2】(2020秋•永嘉县校级期末)如图,已知△ABC≌△DBE,点A,C分别对应点D,E,BC交DE于点F,∠ABD=∠E,若BE=10,CF=4,则EF的长为( )
A.4B.5C.6D.7
【变式3-3】(2021春•沙坪坝区期末)如图,△ABC中,点D、点E分别在边AB、BC上,连结AE、DE,若△ADE≌△BDE,AC:AB:BC=2:3:4,且△ABC的周长比△AEC的周长大6.则△AEC的周长为 .
【题型4 全等三角形的性质(求角度)】
【例4】(2022春•鼓楼区校级期末)如图,△ABC≌△A′B′C′,边B′C′过点A且平分∠BAC交BC于点D,∠B=27°,∠CDB′=98°,则∠C′的度数为( )
A.60°B.45°C.43°D.34°
【变式4-1】(2021秋•民权县期末)如图,△ABC≌△ADE,且AE∥BD,∠BAD=94°,则∠BAC的度数的值为( )
A.84°B.60°C.48°D.43°
【变式4-2】(2021秋•招远市期中)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=56°,则∠CAF的度数为( )
A.36°B.24°C.56°D.34°
【变式4-3】(2022春•武侯区期末)如图,在△ABC中,在边BC上取一点D,连接AD,在边AD上取一点E,连接CE.若△ADB≌△CDE,∠BAD=α,则∠ACE的度数为( )
A.αB.α﹣45°C.45°﹣αD.90°﹣α
【题型5 全等三角形的性质(判断结论)】
【例5】(2022•龙岗区模拟)如图,△ABC≌△A′B′C,且点B′在AB边上,点A′恰好在BC的延长线上,下列结论错误的是( )
A.∠BCB′=∠ACA′B.∠ACB=2∠B
C.∠B′CA=∠B′ACD.B′C平分∠BB′A′
【变式5-1】(2021春•海口期末)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
【变式5-2】(2021秋•新乐市期末)如图,△ABD≌△EBC,AB=12,BC=5,A,B,C三点共线,则下列结论中:
①CD⊥AE;
②AD⊥CE;
③∠EAD=∠ECD;
正确的是
【变式5-3】(2021秋•五常市期末)如图,点E是CD上的一点,Rt△ACD≌Rt△EBC,则下结论:
①AC=BC,②AD∥BE,③∠ACB=90°,④AD+DE=BE,
成立的有 个.
【题型6 全等三角形的性质(探究角度之间的关系)】
【例6】(2022•长春二模)如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为( )
A.α=βB.α=2βC.α+β=90°D.α+2β=180°
【变式6-1】(2021秋•林州市期末)如图,点D,E,F分别在△ABC的边AB,BC,CA上(不与顶点重合),设∠BAC=α,∠FED=θ.若△BED≌△CFE,则α,θ满足的关系是( )
A.α+θ=90°B.α+2θ=180°C.α﹣θ=90°D.2α+θ=180°
【变式6-2】(2022春•徐汇区校级期末)如图,N,C,A三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于( )
A.1:2B.1:3C.2:3D.1:4
【变式6-3】(2022•定远县模拟)如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F,若∠BAC=α,∠BFC=β,则( )
A.2α+β=180°B.2β﹣α=145°C.α+β=135°D.β﹣α=60°
【题型7 全等三角形的性质(动点问题)】
【例7】(2021秋•柘城县期中)如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P在线段AC上,以2cm/s速度从点A出发向点C运动,到点C停止运动.点Q在射线AM上运动,且PQ=AB.若△ABC与△PQA全等,则点P运动的时间为( )
A.4sB.2sC.2s或3s或4sD.2s或4s
【变式7-1】(2021春•浦东新区校级期末)△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为( )
A.2.5B.3C.2.25或3D.1或5
【变式7-2】(2021春•和平区期末)如图,CA⊥AB于点A,AB=8,AC=4,射线BM⊥AB于点B,一动点E从A点出发以2个单位/秒沿射线AB运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,若点E经过t秒(t>0),△DEB与△BCA全等,则t的值为 秒.
【变式7-3】(2021春•高新区期末)如图,△ABC中,∠ACB=90°,AC=6,BC=8.点P从A点出发沿A→C→B路径向终点运动,终点为B点;点Q从B点出发沿B→C→A路径向终点运动,终点为A点.点P和Q分别以每秒1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E、作QF⊥l于F,当点P运动 秒时,以P、E、C为顶点的三角形和以Q、F、C为顶点的三角形全等.
【题型8 全等三角形的性质(证明题)】
【例8】(2021秋•大化县期中)如图所示,已知△ABD≌△CFD,AD⊥BC于D.
(1)求证:CE⊥AB;
(2)已知BC=7,AD=5,求AF的长.
【变式8-1】(2021秋•海淀区校级期中)如图,A,E,C三点在同一直线上,且△ABC≌△DAE.
(1)线段DE,CE,BC有怎样的数量关系?请说明理由.
(2)请你猜想△ADE满足什么条件时,DE∥BC,并证明.
【变式8-2】(2021秋•灌云县月考)如图所示,A,C,E三点在同一直线上,且△ABC≌△DAE.
(1)求证:BC=DE+CE;
(2)当△ABC满足什么条件时,BC∥DE?
【变式8-3】(2021秋•定远县校级期中)如图所示,△ACD≌△ECD,△CEF≌△BEF,∠ACB=90°.
(1)求证:CD⊥AB;
(2)求∠B的度数;
(3)求证:EF∥AC.
初中数学浙教版八年级下册5.2 菱形达标测试: 这是一份初中数学浙教版八年级下册<a href="/sx/tb_c12221_t7/?tag_id=28" target="_blank">5.2 菱形达标测试</a>,文件包含浙教版八年级下册数学举一反三系列专题52菱形的性质与判定八大题型教师版docx、浙教版八年级下册数学举一反三系列专题52菱形的性质与判定八大题型学生版docx等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
数学浙教版5.1 矩形课时作业: 这是一份数学浙教版<a href="/sx/tb_c12223_t7/?tag_id=28" target="_blank">5.1 矩形课时作业</a>,文件包含浙教版八年级下册数学举一反三系列专题51矩形的性质与判定八大题型教师版docx、浙教版八年级下册数学举一反三系列专题51矩形的性质与判定八大题型学生版docx等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。
浙教版七年级下册数学举一反三系列 专题5.4 分式方程的应用【八大题型】(学生版+教师版): 这是一份浙教版七年级下册数学举一反三系列 专题5.4 分式方程的应用【八大题型】(学生版+教师版),文件包含浙教版七年级下册数学举一反三系列专题54分式方程的应用八大题型教师版docx、浙教版七年级下册数学举一反三系列专题54分式方程的应用八大题型学生版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。