- 浙教版-2023年八年级上册数学举一反三系列 专题3.7 一元一次不等式章末题型过关卷(学生版+教师版) 试卷 0 次下载
- 浙教版-2023年八年级上册数学举一反三系列 专题4.1 平面直角坐标系【八大题型】(学生版+教师版) 试卷 1 次下载
- 浙教版-2023年八年级上册数学举一反三系列 专题4.3 平面直角坐标系中点的坐标规律专项训练(30道)(学生版+教师版) 试卷 0 次下载
- 浙教版-2023年八年级上册数学举一反三系列 专题4.4 图形与坐标章末题型过关卷(学生版+教师版) 试卷 0 次下载
- 浙教版-2023年八年级上册数学举一反三系列 专题5.1 函数基础知识【九大题型】(学生版+教师版) 试卷 2 次下载
浙教版八年级上册4.2 平面直角坐标系综合训练题
展开考卷信息:
本套训练卷共30题,题型针对性较高,覆盖面广,选题有深度,涵盖了平面直角坐标系中的规律问题所有类型!
一.选择题(共10小题)
1.(2022春•龙泉驿区期末)如图,在平面直角坐标系中,将折线AEB向右平移得到折线CFD,则折线AEB在平移过程中扫过的面积是( )
A.15B.20C.24D.25
2.(2022春•商南县期末)已知点A的坐标为(0,0),点B的坐标为(4,0),点C在y轴上,△ABC的面积是10,则点C的坐标可能是( )
A.(0,10)B.(5,0)C.(0,﹣5)D.(0,4)
3.(2022•市中区二模)平面直角坐标系中,P(x,y)的横坐标与纵坐标的绝对值之和叫做P(x,y)的勾股值,记为「P」,即「P」=|x|+|y|.若点B在第一象限且满足「B」=4,则满足条件的所有B点与坐标轴围成的图形的面积为( )
A.2B.4C.6D.8
4.(2022春•江夏区校级月考)如图所示,直角坐标系中四边形的面积是( )
A.15.5B.20.5C.26D.31
5.(2022春•汇川区期末)如图,点A、B的坐标分别为(﹣5,6)、(3,2),则三角形ABO的面积为( )
A.12B.14C.16D.18
6.(2022春•沙河市期中)在网格图中有一个面积为10的△ABC,△ABC的三个顶点均在网格的格点上,墨墨在网格图中建立了适当的直角坐标系,并知道点A的坐标为(2,3),点B的坐标为(﹣3,﹣2),后来墨墨不小心在该图洒上了墨水,如图所示,点C的坐标看不清了,但他记得线段AC与y轴平行,则点C的坐标为( )
A.(2,1)B.(1,2)C.(2,﹣1)D.(﹣1,2)
7.(2022春•嘉祥县期末)若△ABC三个顶点的坐标分别为A(﹣3,﹣1),B(2,﹣1),C(1,3),则△ABC的面积为( )
A.7.5B.10C.15D.20
8.(2022秋•历下区期中)如图,由8个边长为1的小正方形组成的图形,被线段AB平分为面积相等的两部分,已知点A的坐标是(1,0),则点B的坐标为( )
A.B.C.D.
9.(2022春•重庆期末)已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a﹣c|0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为( )
A.12B.14C.16D.20
10.(2022春•嘉祥县期末)我们定义:过点(0,a)且平行于x轴的直线为y=a,若A(﹣2,0),B(1,2),点P为直线y=4上一动点,且△PAB的面积为6平方单位,则点P的坐标为( )
A.(﹣2,4)B.(0,4)或(10,4)
C.(﹣2,4)或(10,4)D.(9,4)
二.填空题(共6小题)
11.(2022春•金乡县期末)在平面直角坐标系中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如,三点坐标分别为A(0,3),B(﹣3,4),C(1,﹣2),则“水平底”a=4,“铅垂高”h=6,“矩面积”S=ah=24.若D(2,2),E(﹣2,﹣1),F(3,m)三点的“矩面积”为20,则m的值为 .
12.(2022春•平泉市期末)如图,两个形状、大小完全相同的直角三角形叠放在一起,将直角三角形ABC沿着x轴正方向平移到直角三角形DEF的位置.已知点A(1,5),点B(1,1),DG=1,平移距离为2.
(1)点G的坐标为 ;
(2)阴影部分的面积S= .
13.(2022春•仙居县期末)如图,在平面直角坐标系中,点A(1,1),点B(3,0).现将线段AB平移,使点A,B分别平移到点A′,B',其中点A′(1,4),则四边形AA'B'B的面积为 .
14.(2022春•海淀区校级期中)如图,在平面直角坐标系中,曲线f向上平移1个单位形成曲线g的过程中所扫过的面积是 .
15.(2022春•昌黎县期末)如图,在直角坐标系中,A(﹣1,2),B(3,﹣2),则△AOB的面积为 .
16.(2022•漳州校级一模)已知:如图△ABC的顶点坐标分别为A(﹣4,﹣3),B(0,﹣3),C(﹣2,1),如将B点向右平移2个单位后再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则S1,S2的大小关系为s1 s2(填“<”、“>”、“=”).
三.解答题(共15小题)
17.(2022春•上蔡县月考)如图,六边形ABCDE在平面直角坐标系内.
(1)写出点A、B、C、D、E、F的坐标:A 、B 、C 、D 、E 、F ;
(2)六边形ABCDE的面积为 .
18.(2022春•莆田期末)对于平面直角坐标系中的图形M上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P′(x+e,y﹣e)称为将点P进行“e型平移”,点P′称为将点P进行“e型平移”的对应点;将图形M上的所有点进行“e型平移”称为将图形M进行“e型平移”.例如,将点P(x,y)平移到P′(x+1,y﹣1)称为将点P进行“1型平移”.
(1)已知点A(﹣1,2),B(2,3),将线段AB进行“1型平移”后得到对应线段A′B′.
①画出线段A′B′,并直接写出A′,B′的坐标;
②四边形ABB′A′的面积为 (平方单位);
(2)若点A(2﹣a,a+1),B(a+1,a+2),将线段AB进行“2型平移”后得到对应线段A′B′,当四边形ABB′A′的面积为8平方单位,试确定a的值.
19.(2022春•雨花区校级月考)如图所示,在平面直角坐标系中,点A、B的坐标分别为A(a,0)和B(b,0),且a,b满足|a+4|0,点C的坐标为(0,3).
(1)求a,b的值及S△ABC;
(2)若点M在x轴上,且S△ACMS△ABC,试求点M的坐标.
20.(2022春•长白县期中)如图,在平面直角坐标系中,点A(﹣3b,0)为x轴负半轴上一点,点B(0,4b)为y轴正半轴上一点,其中b满足方程3(b+1)=6.
(1)求点A,B的坐标;
(2)点C为y轴负半轴上一点,且△ABC的面积为12,求点C的坐标;
21.(2022春•新市区期末)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)
(1)求点C到x轴的距离;
(2)求△ABC的面积;
(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.
22.(2022春•思明区校级期中)在平面直角坐标系中,点A,B在y轴正半轴上,且点A在B的下方,将线段AB进行平移得到线段CD,点A的对应点为点D,点B的对应点为点C,
(1)若点A(0,1),B(0,3),D(3,2),求点C的坐标;
(2)点E是第二象限上的一个动点,过点E作EF垂直x轴于F,连接DF,DE,EC.若点A(0,m),B(0,b),C(a+b+1,m+3),D(m,﹣2m+3),三角形DEF的面积为S△DEFa,点D到直线EF的距离为3,试问是否存在m,使得S△BCES△ACE?若存在,请求出m的值;若不存在,请说明理由.
23.(2022春•大同期末)已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.
24.(2022春•罗平县校级期中)在直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,6)
(1)求△ABC的面积.
(2)在y轴上是否存在点D,使得△ABD的面积和△ABC的面积相等,若存在,求出点D的坐标.
(3)除(2)中的点D,在平面直角坐标系中,还能不能找到别的点D,会满足△ABD的面积和△ABC的面积相等,这样的点有多少个?它们的坐标有什么特点?直接写出答案.
25.(2022春•崆峒区期末)在直角坐标系中,已知线段AB,点A的坐标为(1,﹣2),点B的坐标为(3,0),如图1所示.
(1)平移线段AB到线段CD,使点A的对应点为D,点B的对应点为C,若点C的坐标为(﹣2,4),求点D的坐标;
(2)平移线段AB到线段CD,使点C在y轴的正半轴上,点D在第二象限内,连接BC,BD,如图2所示.若S△BCD=7(S△BCD表示三角形BCD的面积),求点C、D的坐标.
(3)在(2)的条件下,在y轴上是否存在一点P,使(S△PCD表示三角形PCD的面积)?若存在,求出点P的坐标;若不存在,请说明理由.
26.(2022春•通川区期末)已知在平面直角坐标系中,O为坐标原点,点A的坐标为(2,a),点B的坐标为(b,2),点C的坐标为(c,0),其中a,b满足(a+b﹣10)2+|a﹣b+2|=0.
(1)求A,B两点的坐标;
(2)当△ABC的面积为10时,求点C的坐标;
(3)当2≤S△ABC≤12时,则点C的横坐标c的取值范围是 .
27.(2022春•宁都县期末)已知:如图,△ABC的三个顶点位置分别是A(1,0)、B(﹣2,3)、C(﹣3,0).
(1)求△ABC的面积是多少?
(2)若点A、C的位置不变,当点P在y轴上时,且S△ACP=2S△ABC,求点P的坐标?
(3)若点B、C的位置不变,当点Q在x轴上时,且S△BCQ=2S△ABC,求点Q的坐标?
28.(2022春•河北期末)如图,在平面直角坐标系中,已知点A(0,4),B(8,0),C(8,6)三点.
(1)求△ABC的面积;
(2)如果在第二象限内有一点P(m,1),且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P点的坐标.
29.(2022春•上杭县期末)在平面直角坐标系中(单位长度为1cm),已知点M(m,0),N(n,0),且|2m+n|=0.
(1)求m,n的值;
(2)若点E是第一象限内一点,且EN⊥x轴,点E到x轴的距离为4,过点E作x轴的平行线a,与y轴交于点A.点P从点E处出发,以每秒2cm的速度沿直线a向左移动,点Q从原点O同时出发,以每秒1cm的速度沿x轴向右移动.
①经过几秒PQ平行于y轴?
②若某一时刻以A,O,Q,P为顶点的四边形的面积是10cm2,求此时点P的坐标.
30.(2022春•武清区期中)已知点A(a,0)、B(b,0),且|b﹣2|=0.
(1)求a、b的值.
(2)在y轴的正半轴上找一点C,使得三角形ABC的面积是15,求出点C的坐标.
(3)过(2)中的点C作直线MN∥x轴,在直线MN上是否存在点D,使得三角形ACD的面积是三角形ABC面积的?若存在,求出点D的坐标;若不存在,请说明理由.
专题5.6 解分式方程专项训练(30道)(举一反三)(学生版) 2022年七年级数学下册举一反三系列(浙教版): 这是一份专题5.6 解分式方程专项训练(30道)(举一反三)(学生版) 2022年七年级数学下册举一反三系列(浙教版),共2页。试卷主要包含了解方程,解分式方程等内容,欢迎下载使用。
专题5.5 分式的化简求值专项训练(30道)(举一反三)(学生版) 2022年七年级数学下册举一反三系列(浙教版): 这是一份专题5.5 分式的化简求值专项训练(30道)(举一反三)(学生版) 2022年七年级数学下册举一反三系列(浙教版),共4页。试卷主要包含了先化简,再求值,先化简再求值,先化简等内容,欢迎下载使用。
人教版七年级数学下册章节重难点举一反三 专题7.2 平面直角坐标系中点的面积问题专项训练(30道)(原卷版+解析): 这是一份人教版七年级数学下册章节重难点举一反三 专题7.2 平面直角坐标系中点的面积问题专项训练(30道)(原卷版+解析),共38页。