|试卷下载
搜索
    上传资料 赚现金
    专题2.2 图形规律问题(压轴题专项讲练)2024秋季学年七年级数学上册压轴题专项讲练系列(人教版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题2.2 图形规律问题(压轴题专项讲练)(人教版)(原卷版).docx
    • 解析
      专题2.2 图形规律问题(压轴题专项讲练)(人教版)(解析版).docx
    专题2.2 图形规律问题(压轴题专项讲练)2024秋季学年七年级数学上册压轴题专项讲练系列(人教版)01
    专题2.2 图形规律问题(压轴题专项讲练)2024秋季学年七年级数学上册压轴题专项讲练系列(人教版)02
    专题2.2 图形规律问题(压轴题专项讲练)2024秋季学年七年级数学上册压轴题专项讲练系列(人教版)03
    专题2.2 图形规律问题(压轴题专项讲练)2024秋季学年七年级数学上册压轴题专项讲练系列(人教版)01
    专题2.2 图形规律问题(压轴题专项讲练)2024秋季学年七年级数学上册压轴题专项讲练系列(人教版)02
    专题2.2 图形规律问题(压轴题专项讲练)2024秋季学年七年级数学上册压轴题专项讲练系列(人教版)03
    还剩10页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题2.2 图形规律问题(压轴题专项讲练)-2023-2024学年七年级数学上册压轴题专项讲练系列(人教版)

    展开
    这是一份专题2.2 图形规律问题(压轴题专项讲练)-2023-2024学年七年级数学上册压轴题专项讲练系列(人教版),文件包含专题22图形规律问题压轴题专项讲练人教版原卷版docx、专题22图形规律问题压轴题专项讲练人教版解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。

    【典例1】国庆节期间,人民广场的一个公共区域用盆栽进行了美化,盆栽按如图的方式摆放,图中的盆栽被折线隔开分成若干层,第一层有1个盆栽,第二层有3个盆栽,第三层有5个盆栽,第四层有7个盆栽,…,以此类推.请观察图形规律,解答下列问题:
    (1)第10层有 个盆栽,前5层共有 个盆栽;
    (2)观察图计算1+3+5+7+⋯+17= ;
    (3)拓展应用:求51+53+55+⋯+2023的值.
    【思路点拨】
    (1)后面一层比前面一层多2个盆栽,结合图形,根据规律可求出其值;
    (2)图形刚好构成正方形的面积,求面积即可;
    (3)先算出1+3+5+…+49+51+…+2023的和,1+3+5+…+49的和,再求它们的差即可.
    【解题过程】
    (1)解:根据题意可得,2×(10−1)+1=19,
    ∴第10层有19个盆栽,
    5×5=25,
    ∴前5层共有25个盆栽,
    故答案为:19;25.
    (2)解:观察图形可得,第9层盆栽数量为:2×9−1=17,
    ∴1+3+5+7+⋯+17=92=81,
    故答案为:81.
    (3)解:根据题意可得,第1012层盆栽数量为:2×1012−1=2023,
    ∴1+3+5+⋯+49+51+53+55+⋯+2023=10122,
    第25层盆栽数量为:2×25−1=49,
    ∴1+3+5+⋯+49=252,
    ∴51+53+55+⋯+2023=(1+3+5+⋯+51+53+55+⋯2023)−(1+3+5+⋯+49),
    =10122−252=1023519,
    ∴51+53+55+⋯+2023的值为1023519.
    1.(2022秋·江苏·七年级期中)观察下列一组图形中点的个数,其中第一个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,…按此规律第6个图形中共有点的个数是( )
    A.38B.46C.61D.64
    2.(2022秋·浙江·七年级阶段练习)如图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0,1,2)上;先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.若数轴绕过圆周99圈后,数轴上的一个整数点刚好落在圆周上数字1所对应的位置,则这个整数是( )
    A.297B.298C.299D.300
    3.(2023春·全国·七年级开学考试)观察图中正方形四个顶点所标的数字规律,可知第506个正方形的左上角标的数是( )
    A.2020B.2021C.2022D.2023
    4.(2022秋·湖南·七年级期末)如图是由边长为1的木条组成的几何图案,观察图形规律,第一个图案由1个正方形组成,共用的木条根数S1=4,第二个图案由4个正方形组成,共用的木条根数S2=12,第三个图案由9个正方形组成,共用的木条根数S3=24,以此类推…那么第100个图案共用的木条根数S100为( )
    A.19600B.20400C.20200D.20000
    5.(2023秋·贵州毕节·七年级校联考期末)如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2022次相遇在边( )上.
    A.CDB.ADC.ABD.BC
    6.(2022秋·湖南娄底·七年级统考期中)观察如图所示图形构成的规律,根据此规律,第42个图中小圆点的个数为 .
    7.(2023秋·全国·七年级课堂例题)观察并找出如图图形变化的规律,则第2025个图形中黑色正方形的数量是 个.
    8.(2022秋·浙江杭州·七年级期末)如图,第(1)个多边形由正三角形“扩展”而来,边数记为a3,第(2)个多边形由正方形“扩展”而来,边数记为a4,……,依此类推,由正n边形“扩展”而来的多边形的边数记为an(n≥3),当1a3+1a4+1a5+⋯+1an的结果是6712022时,n的值为 .
    9.(2022秋·全国·七年级期中)正整数按如图所示的规律排列,则第29行第30列的数字为 .
    10.(2023·全国·七年级假期作业)同样大小的黑色棋子按如图所示的规律摆放:
    (1)图5有多少颗黑色棋子?
    (2)若第n+2个图形比第n个图形中多2021颗棋子,试求n的值.
    11.(2022秋·安徽合肥·七年级校联考期中)下列每一幅图都是由单位长度均为1的小正方形(包含白色小正方形和灰色小正方形)按某种规律组成的.
    (1)根据规律,第4个图中共有___________个小正方形,其中灰色小正方形共有___________个.
    (2)第n个图形中,白色小正方形共有___________个.(用含n的式子表示,n为正整数)
    (3)白色小正方形可能比灰色小正方形正好多2024个吗?如果可能,求出n的值;如果不可能,请说明理由.
    12.(2023秋·安徽六安·七年级统考期末)用火柴棒按如图的方式搭图形.
    (1)按图示规律完成下表:
    (2)按照这种方式搭下去,搭第n个图形需要 根火柴棒.(用含n的代数式表示)
    (3)小静同学说她按这种方式搭出来的一个图形用了200根火柴棒,你认为可能吗?如果可能,那么是第几个图形?如果不可能,请说明理由.
    13.(2022秋·安徽滁州·七年级校考阶段练习)以下是一幅幅平面镶嵌图案,它们由相同的灰色正方形和白色等边三角形排列而成,观察图案,如图1,当正方形只有1个时,等边三角形有4个;如图2,当正方形有2个时,等边三角形有7个;以此类推……
    (1)第5个图案中正方形有______个,等边三角形有______个.
    (2)第n个图案中正方形有______个,等边三角形有______个.
    (3)若此类图案中有2023个等边三角形,该图案中正方形有多少个?
    14.(2023秋·安徽合肥·七年级统考期末)下列图形是由边长为1的小正方形按照一定的规律组成的.观察图形.回答下列问题:
    (1)按上述规律排列,第⑤幅图中,图形的周长为______﹔
    (2)按上述规律排列,第n幅图中.图形的周长为______;
    (3)按上述规律排列,是否存在第n幅图形的周长为60,请说明理由.
    15.(2023春·四川成都·七年级成都外国语学校校考开学考试)某餐厅中,一张桌子可坐6人,有以下两种摆放方式:
    (1)有4张桌子,用第一种摆设方式,可坐多少人?用第二种摆设方式,可坐多少人?
    (2)用含有n的代数式表示:有n张桌子,用第一种摆设方式可坐多少人?用第二种摆设方式,可坐多少人?
    (3)一天中午,餐厅要接待80位顾客共同就餐,但餐厅只有20张这样的桌子可用,且每4张拼成一张大桌子.若你是这家餐厅的经理,你打算选择哪种方式来摆放餐桌,并说明理由.
    16.(2023·全国·七年级假期作业)如图,某链条每节长为2.8cm,每两节链条相连接部分重叠的圆的直径为1cm,按这种连接方式,完成下面各题.

    (1)2节链条的总长度为______cm;3节链条的总长度为______cm;4节链条的总长度为______cm;
    (2)根据上述规律,n节链条的总长度为多少cm;(用含n的式子表示,不用说理)
    (3)一根链条的总长度能否为73cm?若能,请求出该链条由几节组成;若不能,请说明理由.
    17.(2022秋·全国·七年级专题练习)(1)有一列数1、3、5、7……有无数项(无数个数),请观察其规律后写出其中第20项(从左往右数第20个数)是 ,第n项是 ;
    (2)二算法是数学的一种很重要的方法,用二算法可以得到许多很重要的数学公式.请观察下图,用二算法推导出1+3、1+3+5、1+3+5+7的计算结果,猜测1+3+5+7+……+(2n-1)的计算结果;
    (3)由(2)推导出2+4+6+……+2n的结果.
    18.(2022秋·广西北海·七年级统考期中)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.
    【观察思考】
    当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2):
    (1)当正方形地砖有2块时,等腰直角三角形地砖有________块(如图3);
    (2)以此类推,人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加________块;
    (3)【规律总结】若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为________(用含n的代数式表示).
    (4)【问题解决】现有2022块等腰直角三角形地砖,若按此规律再建一条人行道,则需要正方形地砖多少块?
    19.(2023春·四川自贡·七年级四川省荣县中学校校考阶段练习)用火柴棒按图中的方式搭图形:
    (1)按图示规律填空:
    (2)按照这种方式搭下去,请写出搭第n个图形需要的火柴根数;
    (3)小明发现:按照这种方式搭图形会产生若干个正方形,若使用2022根火柴搭图形,图中会产生多少个正方形?
    20.(2022秋·北京通州·七年级统考期末)现有一个长方形ABCD的宽为1,长为aa>1的纸片,先剪去一个正方形,余下一个长方形,在余下的长方形纸片中再剪去一个正方形,又余下一个长方形……,依此类推,如图是剪3次后余下的长方形恰好是正方形的其中一种示意图及相应a的值,请画出(与示意图不同)剪3次后余下的长方形恰好是正方形的示意图,并写出相应a的值.
    21.(2022秋·安徽滁州·七年级校考阶段练习)图①是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层,将图①倒置后与原图拼成图②所示的形状,这样我们可以算出图①中所有圆圈的个数为1+2+3+⋯+n=n(n+1)2,如果图①-④中各有11层.
    (1)图①中共有___________个圆圈:
    (2)我们自上而下,在圆圈中按图③的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边圆图的数是___________.
    (3)我们自上而下,在圆圈中按图④的方式填上一串连续的整数−23,−22,−21,⋯求图④所有圆圈中各数的绝对值之和.
    22.(2023·全国·七年级假期作业)(1)为了计算1+2+3+⋯+8的值,我们构造图形(图1),共8行,每行依次比上一行多一个点.此图形共有(1+2+3+⋯+8)个点.如图2,添出图形的另一半,此时共8行9列,有8×9=72个点,由此可得1+2+3+⋯+8=12×(1+8)×8=36.
    用此方法,可求得1+2+3+⋯+20= (直接写结果).
    (2)观察下面的点阵图(如图3),解答问题:
    填空:①1+3+5+⋯+49= ;
    ②1+3+5+⋯+(2n+1)= .
    (3)请构造一图形,求12+122+123+⋯+122023 (画出示意图,写出计算结果).
    图形
    1
    2
    3
    4
    5

    火柴棒根数
    5
    9
    13



    图形编号





    火柴棒根数
    7
    12
    ___________
    ___________
    ___________
    相关试卷

    专题5.3 期中复习——选择压轴题专项训练(压轴题专项训练)-2023-2024学年七年级数学上册压轴题专项讲练系列(人教版): 这是一份专题5.3 期中复习——选择压轴题专项训练(压轴题专项训练)-2023-2024学年七年级数学上册压轴题专项讲练系列(人教版),文件包含专题53期中复习选择压轴题专项训练压轴题专项训练人教版原卷版docx、专题53期中复习选择压轴题专项训练压轴题专项训练人教版解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。

    专题5.2 期中复习——填空压轴题专项训练(压轴题专项训练)-2023-2024学年七年级数学上册压轴题专项讲练系列(人教版): 这是一份专题5.2 期中复习——填空压轴题专项训练(压轴题专项训练)-2023-2024学年七年级数学上册压轴题专项讲练系列(人教版),文件包含专题52期中复习填空压轴题专项训练压轴题专项训练人教版原卷版docx、专题52期中复习填空压轴题专项训练压轴题专项训练人教版解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。

    专题5.1 期中复习——解答压轴题专项训练(压轴题专项训练)-2023-2024学年七年级数学上册压轴题专项讲练系列(人教版): 这是一份专题5.1 期中复习——解答压轴题专项训练(压轴题专项训练)-2023-2024学年七年级数学上册压轴题专项讲练系列(人教版),文件包含专题51期中复习解答压轴题专项训练压轴题专项训练人教版原卷版docx、专题51期中复习解答压轴题专项训练压轴题专项训练人教版解析版docx等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题2.2 图形规律问题(压轴题专项讲练)2024秋季学年七年级数学上册压轴题专项讲练系列(人教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map