终身会员
搜索
    上传资料 赚现金
    2022-2023学年广东省深圳外国语学校高二(上)期末数学试卷(含答案详解)
    立即下载
    加入资料篮
    2022-2023学年广东省深圳外国语学校高二(上)期末数学试卷(含答案详解)01
    2022-2023学年广东省深圳外国语学校高二(上)期末数学试卷(含答案详解)02
    2022-2023学年广东省深圳外国语学校高二(上)期末数学试卷(含答案详解)03
    还剩21页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年广东省深圳外国语学校高二(上)期末数学试卷(含答案详解)

    展开
    这是一份2022-2023学年广东省深圳外国语学校高二(上)期末数学试卷(含答案详解),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    1.(5分)已知数列{an}满足a1=1,an+1=2an+n,则a3=( )
    A.3B.7C.8D.9
    2.(5分)设a∈R,直线l1:ax+2y﹣1=0,直线l2:x+(a+1)y﹣a2=0,若l1⊥l2,则a=( )
    A.1B.﹣2C.D.1或﹣2
    3.(5分)已知数列{an}满足a1=3,an+1an=an﹣1,则a2023=( )
    A.B.C.D.3
    4.(5分)如图,在四面体PABC中,E是AC的中点,F是PB上靠近P点的四等分点,则( )
    A.B.
    C.D.
    5.(5分)已知直线ln:3x﹣4y+5n﹣6=0(n∈N*)与圆∁n:(x﹣2)2+y2(an>0),给出下面三个结论:
    ①直线ln与直线ln+1平行且两直线距离为1;
    ②若直线l,与圆∁n相切,则an=n;
    ③若直线ln与圆∁n相切,圆Cn+1与圆∁n构成的圆环面积最小值为3π.
    其中正确的是 ( )
    A.①②B.①③C.②③D.①②③
    6.(5分)设椭圆0,b>0)的左、右焦点分别为F1,F2,过原点O的直线l交椭圆于M,N两点,若|MN|=2c,|MF2|:|NF2|,则C的离心率为 ( )
    A.B.C.D.
    7.(5分)关于x的方程有唯一解,则实数k的取值范围是 ( )
    A.k≤﹣2或k≥2B.k≤﹣2或k≥2或k=±
    C.k<﹣2或k>2或k=±D.k<﹣2或k>2
    8.(5分)已知曲线C:x2+y2=1﹣|x|y,则的最大值为 ( )
    A.B.C.1D.
    二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
    (多选)9.(5分)设{,,}是空间一个基底,则下列选项中正确的是 ( )
    A.若⊥,⊥,则⊥
    B.,,一定能构成空间的一个基底
    C.对空间中的任一向量,总存在有序实数组(x,y,z),使xyz
    D.存在有序实数对,使得xy
    (多选)10.(5分)已知直线l:x﹣y+5=0,过直线上任意一点M作圆C:(x﹣3)2+y2=4的两条切线,切点分别为A,B,则有( )
    A.|MA|长度的最小值为
    B.不存在点M使得∠AMB为60°
    C.当|MC|⋅|AB|最小时,直线AB的方程为x﹣2y﹣1=0
    D.若圆C与x轴交点为P,Q,则的最小值为28
    (多选)11.(5分)已知双曲线C:1(a>0),若圆x2+(y﹣2)2=1 与双曲线C的渐近线相切,则( )
    A.双曲线C的实轴长为
    B.双曲线C的离心率e=2
    C.点P为双曲线C上任意一点,点P到C的两条渐近线的距离分别为d1d2,则d1d2
    D.直线y=k1x+m与C交于A,B两点,点D为弦AB的中点,若OD(O为坐标原点)的斜率为k2,则k1k2=3
    (多选)12.(5分)大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项都代表太极衍生过程.已知大衍数列{an}满足a1=0,an+1,则( )
    A.a4=6
    B.an+2=an+2(n+1)
    C.an
    D.数列{(﹣1)nan}的前2n项和为n(n+1)
    三、填空题:本题共4小题,每小题5分,共20分。
    13.(5分)抛物线y=2x2的焦点坐标为 .
    14.(5分)设点A(3,5),点B和C分别为直线l:x﹣2y+2=0和y轴上的两个动点,则△ABC的周长的最小值为 .
    15.(5分)如图,在正三棱柱ABC﹣A1B1C1中,AA1=2AB=4,E是BB1的中点,F是A1C1的中点,若过A,E,F三点的平面与B1C1交于点G,则|A1G|= .
    16.(5分)在数列{an}中,如果对任意n∈N*,都有λ(λ为常数),则称数列{an}为比等差数列,λ称为比公差,现给出以下命题:
    ①若数列{cn}满足c1=1,c2=1,cn=cn﹣1+cn﹣2(n≥3,n∈N*),则该数列不是比等差数列;
    ②若数列满足an=3•2n﹣1,则该数列是比等差数列,且比公差λ=0;
    ③等比数列一定是比等差数列,等差数列一定不是比等差数列;
    ④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
    其中所有正确的序号是 .
    四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。
    17.(10分)已知圆C的圆心在直线l1:y=﹣x﹣1 上,且经过A(0,﹣1),B(2,﹣1)两点.
    (1)求圆C的方程;
    (2)已知过点P(0,2)的直线l2与圆C相交,被圆C截得的弦长为2,求直线l2的方程.
    18.(12分)已知函数f(x)=2cs2x.
    (1)求函数f(x)的单调增区间与值域;
    (2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=0,b=1,△ABC的面积为,求tanB的值.
    19.(12分)设首项为的数列{an}的前n项积为Tn,且满足anan+1=(n+1)an﹣nan+1.
    (1)求数列{an} 的通项公式;
    (2)设数列的前n项和为Sn,求证:.
    参考公式:12+22+32+•s+n2n(n+1)(2n+1).
    20.(12分)已知双曲线.
    (1)过点N(1,4)的直线与双曲线交于S,T两点,若点N是线段ST的中点,求直线ST的方程;
    (2)直线l:y=kx+m(k≠±2)与双曲线有唯一的公共点M,过点M且与l垂直的直线分别交x轴、y轴于A(x0,0),B(0,y0)两点.当点M运动时,求点P(x0,y0)的轨迹方程,
    21.(12分)已知:在四棱锥P﹣ABCD中,底面ABCD为正方形,侧棱PA⊥底面ABCD,点M为PD中点,PA=AD=1.
    (1)求证:平面MAC⊥平面PCD;
    (2)求点P到平面MAC的距离.
    22.(12分)已知椭圆C:1(a>b>0)的离心率为,且过点 A(,).
    (1)求椭圆C的方程;
    (2)直线l与椭圆C交于不同的M,N两点,且直线OM,MN,ON的斜率依次成等比数列.椭圆C上是否存在一点P,使得四边形OMPN为平行四边形?若存在,求出直线l的方程;若不存在,请说明理由.
    2022-2023学年广东省深圳外国语学校高二(上)期末数学试卷
    参考答案与试题解析
    一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
    1.(5分)已知数列{an}满足a1=1,an+1=2an+n,则a3=( )
    A.3B.7C.8D.9
    【解答】解:∵数列{an}满足a1=1,an+1=2an+n,
    ∴a2=2a1+1=3,
    a3=2a2+2=8,
    故选:C.
    2.(5分)设a∈R,直线l1:ax+2y﹣1=0,直线l2:x+(a+1)y﹣a2=0,若l1⊥l2,则a=( )
    A.1B.﹣2C.D.1或﹣2
    【解答】解:∵a∈R,直线l1:ax+2y﹣1=0,直线 l2:x+(a+1)y﹣a2=0,l1⊥l2,
    ∴a×1+2×(a+1)=0,求得a,
    故选:C.
    3.(5分)已知数列{an}满足a1=3,an+1an=an﹣1,则a2023=( )
    A.B.C.D.3
    【解答】解:∵数列{an}满足a1=3,an+1an=an﹣1,
    ∴a2a1=a1﹣1,可得a2,
    a2a3=a2﹣1,可得a3,
    a3a4=a3﹣1,可得a4=3,

    可得数列{an}是周期为3的数列,且前三项为:3,,,
    ∴a2023=a1=3.
    故选:D.
    4.(5分)如图,在四面体PABC中,E是AC的中点,F是PB上靠近P点的四等分点,则( )
    A.B.
    C.D.
    【解答】解:E是AC的中点,F是PB上靠近P点的四等分点,
    则.
    故选:B.
    5.(5分)已知直线ln:3x﹣4y+5n﹣6=0(n∈N*)与圆∁n:(x﹣2)2+y2(an>0),给出下面三个结论:
    ①直线ln与直线ln+1平行且两直线距离为1;
    ②若直线l,与圆∁n相切,则an=n;
    ③若直线ln与圆∁n相切,圆Cn+1与圆∁n构成的圆环面积最小值为3π.
    其中正确的是 ( )
    A.①②B.①③C.②③D.①②③
    【解答】解:由直线ln:3x﹣4y+5n﹣6=0(n∈N*),可得直线ln+1:3x﹣4y+5(n+1)﹣6=0,即3x﹣4y+5n﹣1=0,
    ∴直线ln与直线ln+1平行,直线ln与直线ln+1的距离为1,故①正确.
    由圆∁n(x﹣2)2+y2(an>0),得圆心∁n(2,0),半径为an,
    若直线ln与圆∁n相切,∴an,∴an=n,故②正确.
    圆Cn+1与圆∁n是同心圆,故圆Cn+1与圆∁n构成的圆环面积为π(an+1)2﹣π(an)2=π(2n+1)≥3π,
    当且仅当n=1时取等号,故圆Cn+1与圆∁n构成的圆环面积最小值为3π,故③正确.
    故选:D.
    6.(5分)设椭圆0,b>0)的左、右焦点分别为F1,F2,过原点O的直线l交椭圆于M,N两点,若|MN|=2c,|MF2|:|NF2|,则C的离心率为 ( )
    A.B.C.D.
    【解答】解:∵过原点O的直线l交椭圆于M,N两点,∴MN被O平分,
    又F1F2被O平分,∴四边形MF1NF2是平行四边形,
    又|MN|=2c=|F1F2|,∴四边形MF1NF2是矩形,
    ∵|MF2|:|NF2|,
    由对称性可得|MF1|=|NF2|,∴设|MF2|=m,|MF1|=2m,
    ∴|F1F2|3m,∴m,
    ∴|MF2|+|MF1|2a,
    ∴.
    故选:B.
    7.(5分)关于x的方程有唯一解,则实数k的取值范围是 ( )
    A.k≤﹣2或k≥2B.k≤﹣2或k≥2或k=±
    C.k<﹣2或k>2或k=±D.k<﹣2或k>2
    【解答】解:分别画出曲线y,y=kx+4,
    由y,化为x2+y2=4(0≤y≤2),可得次曲线是以原点O为圆心,2为半径的半圆,与x轴相交于点A(﹣2,0),B(2,0).
    直线y=kx+4经过定点P(0,4).
    分类讨论:
    ①直线与半圆相切时,圆心O到直线的距离d2,解得k=±,此时直线与半圆有且只有一个公共点,即关于x的方程有唯一解.
    ②直线y=kx+4经过点A(﹣2,0)是满足0=﹣2k+4,解得k=2,可得k>2时,直线与半圆有且只有一个公共点,即关于x的方程有唯一解.
    ③直线y=kx+4经过点B(2,0)是满足0=2k+4,解得k=﹣2,可得k<﹣2时,直线与半圆有且只有一个公共点,即关于x的方程有唯一解.
    综上①②③可得:实数k的取值范围是k>2或k<﹣2或k=±,
    故选:C.
    8.(5分)已知曲线C:x2+y2=1﹣|x|y,则的最大值为 ( )
    A.B.C.1D.
    【解答】解:∵曲线C:x2+y2=1﹣|x|y,∴|x|y=1﹣(x2+y2),
    又|x|y,
    ∴1﹣(x2+y2),
    ∴1,∴x2+y2≤2,
    ∴,
    当且仅当x=y=1时取等号,
    ∴的最大值为.
    故选:A.
    二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
    (多选)9.(5分)设{,,}是空间一个基底,则下列选项中正确的是 ( )
    A.若⊥,⊥,则⊥
    B.,,一定能构成空间的一个基底
    C.对空间中的任一向量,总存在有序实数组(x,y,z),使xyz
    D.存在有序实数对,使得xy
    【解答】解:对于A,⊥,⊥,不能得出⊥,也可能是、相交不一定垂直,选项A错误;
    对于B,假设向量,,共面,则x()+y(),x、y∈R,
    化简得(x+y)(1﹣x)(1﹣y),所以、、共面,这与已知矛盾,所以选项B正确;
    对于C,根据空间向量基本定理知,对空间任一向量,总存在有序实数组(x,y,z),使xyz,选项C正确;
    对于D,因为{,,}是空间一个基底,所以与、不共面,选项D错误.
    故选:BC.
    (多选)10.(5分)已知直线l:x﹣y+5=0,过直线上任意一点M作圆C:(x﹣3)2+y2=4的两条切线,切点分别为A,B,则有( )
    A.|MA|长度的最小值为
    B.不存在点M使得∠AMB为60°
    C.当|MC|⋅|AB|最小时,直线AB的方程为x﹣2y﹣1=0
    D.若圆C与x轴交点为P,Q,则的最小值为28
    【解答】解:由题知圆C的圆心为(3,0),半径为r=2,
    对于A:因为圆心(3,0)到直线l:x﹣y+5=0的距离为d4,所以|MC|min=4,
    所以|MA|min2,
    对于B:假设存在点M使得∠AMB为60°,如图,则∠AMC=30°,
    故在Rt△AMC中,|MC|=2r=4,
    由A知|MC|min=44,故矛盾,即不存在点M使得∠AMB为60°,故B正确;
    对于C:由于MC⊥AB,故四边形MACB的面积为SMACB|MC|•|AB|=2S△MAC=|MA|•r=2|MA|,
    所以|MC|•|AB|=4|MA|,故当|MC|•|AB|最小时,|MA|最小,由A选项知|MA|min2,
    此时MC⊥l,l∥AB,即直线AB的斜率为1,由于直线x﹣2y﹣1=0的斜率为,故C错误;
    对于D:由题知P(1,0),Q(5,0),设M(x,x+5),
    (1﹣x,﹣x﹣5)•(5﹣x,﹣x﹣5)=(5﹣x)(1﹣x)+(x+5)2=2x2+4x+30=2(x+1)2+28≥28,
    当且仅当x=﹣1时等号,故的最小值为28,故D正确.
    故选:BD.
    (多选)11.(5分)已知双曲线C:1(a>0),若圆x2+(y﹣2)2=1 与双曲线C的渐近线相切,则( )
    A.双曲线C的实轴长为
    B.双曲线C的离心率e=2
    C.点P为双曲线C上任意一点,点P到C的两条渐近线的距离分别为d1d2,则d1d2
    D.直线y=k1x+m与C交于A,B两点,点D为弦AB的中点,若OD(O为坐标原点)的斜率为k2,则k1k2=3
    【解答】解:根据题意可得:双曲线的渐近线方程为y=±x,即x±ay=0,
    又圆x2+(y﹣2)2=1 与双曲线C的渐近线相切,
    ∴圆心(0,2)到渐近线x±ay=0的距离dr,
    ∴,又a>0,
    ∴a,又b=1,∴c,
    对A选项,∵双曲线C的实轴长为2a,∴A正确;
    对B选项,∵双曲线C的离心率e2,∴B选项正确;
    对C选项,设P为(m,n),又P在双曲线上,
    ∴,∴b2m2﹣a2n2=a2b2,
    又P为(m,n)到双曲线的渐近线bx±ay=0的距离分别为:
    ,,
    ∴,∴C选项错误;
    对D选项,设A(x1,y1),B(x2,y2),又A,B在双曲线上,
    ∴,两式相减可得:

    ∴,又,b2=1,
    ∴3﹣k1k2=0,∴k1k2=3,∴D选项正确.
    故选:ABD.
    (多选)12.(5分)大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项都代表太极衍生过程.已知大衍数列{an}满足a1=0,an+1,则( )
    A.a4=6
    B.an+2=an+2(n+1)
    C.an
    D.数列{(﹣1)nan}的前2n项和为n(n+1)
    【解答】解:∵a1=0,an+1,
    ∴a2=a1+2=2,a3=a2+2=4,a4=a3+4=8,故A错误,
    当n为奇数时,an+1=an+n+1,an+2=an+1+n+1,∴an+1+an+2=an+1+an+2(n+1),∴an+2=an+2(n+1),
    当n为偶数时,an+1=an+n,an+2=an+1+n+2,∴an+1+an+2=an+1+an+2(n+1),∴an+2=an+2(n+1),故B正确;
    当n为奇数时,an+2=an+2(n+1),可得an+2﹣an=2(n+1),an=(an﹣an﹣2)+(an﹣2﹣an﹣4)+⋯⋯+(a3﹣a1)+a1
    =2(n﹣1)+2(n﹣3)⋯⋯+2(1+1)+0,
    当n为偶数时,an+2=an+2(n+1),可得an+2﹣an=2(n+1),an=(an﹣an﹣2)+(an﹣2﹣an﹣4)+⋯⋯+(a4﹣a2)+a2
    =2(n﹣1)+2(n﹣3)+⋯⋯+2(2+1)+2,故C正确;
    数列{(﹣1)nan}的前2n项和S2n=(﹣a1+a2)+(﹣a3+a4)+⋯⋯+(﹣a2n﹣1+a2n)=2+4+6+⋯⋯+2n=n(n+1).故D正确;
    故选:BCD.
    三、填空题:本题共4小题,每小题5分,共20分。
    13.(5分)抛物线y=2x2的焦点坐标为 (0,) .
    【解答】解:抛物线的方程为y=2x2,
    则抛物线的标准方程为x2y,
    即抛物线的焦点坐标为(0,),
    故答案为:(0,).
    14.(5分)设点A(3,5),点B和C分别为直线l:x﹣2y+2=0和y轴上的两个动点,则△ABC的周长的最小值为 .
    【解答】解:∵点A(3,5),
    ∴点A关于y轴的对称点为M(﹣3,5),
    设A(3,5)关于l的对称点为D(a,b),
    则,解得a=5,b=1,
    故D(5,1),
    ∴|MC|=|CA|,|AB|=|BD|,
    ∴△ABC的周长为|MC|+|CB|+|BD|,
    当M,C,B,D共线时,△ABC的周长的值最小,此时△ABC的周长为|DM|.
    故答案为:.
    15.(5分)如图,在正三棱柱ABC﹣A1B1C1中,AA1=2AB=4,E是BB1的中点,F是A1C1的中点,若过A,E,F三点的平面与B1C1交于点G,则|A1G|= .
    【解答】解:如图,以C为原点建立空间直角坐标系C﹣xyz,
    则A(,1,0),A1(,1,4),E(0,2,2),F(,,4),
    由题可设G(0,a,4),
    则(,1,2),(,,4),(,a﹣1,4),
    设平面AEF的一个法向量(x,y,z),
    则,令x,解得,
    故(,,),
    由30,解得a,
    则(,,0),
    ∴||.
    故答案为:.
    16.(5分)在数列{an}中,如果对任意n∈N*,都有λ(λ为常数),则称数列{an}为比等差数列,λ称为比公差,现给出以下命题:
    ①若数列{cn}满足c1=1,c2=1,cn=cn﹣1+cn﹣2(n≥3,n∈N*),则该数列不是比等差数列;
    ②若数列满足an=3•2n﹣1,则该数列是比等差数列,且比公差λ=0;
    ③等比数列一定是比等差数列,等差数列一定不是比等差数列;
    ④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
    其中所有正确的序号是 ①② .
    【解答】解:①,∵cn=cn﹣1+cn﹣2,∴常数,∴该数列不是比等差数列,故①正确;
    ②,若an=3•2n﹣1,则2﹣2=0,故②正确;
    ③,∵等比数列都有q﹣q=0,∴等比数列一定是比等差数列,
    若等差数列为常数列且不为0,则1﹣1=0,∴此等差数列是比等差数列,故③错误;
    ④,如果{an}是等差数列,{bn}是等比数列,设an=n,bn=3n,
    则常数,不是比等差数列,故④错误;
    故答案为:①②.
    四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。
    17.(10分)已知圆C的圆心在直线l1:y=﹣x﹣1 上,且经过A(0,﹣1),B(2,﹣1)两点.
    (1)求圆C的方程;
    (2)已知过点P(0,2)的直线l2与圆C相交,被圆C截得的弦长为2,求直线l2的方程.
    【解答】解:(1)线段AB的中点为(1,﹣1),直线AB的斜率为kAB0,
    所以线段AB的垂直平分线为x=1,
    由,解得,
    所以圆心为C(1,﹣2),半径为|AC|,
    所以圆C的方程为(x﹣1)2+(y+2)2=2.
    (2)当直线l2的斜率不存在时,由,得y=﹣1,或y=﹣3,
    即直线x=0与圆C相交所得弦长为﹣1﹣(﹣3)=2,符合题意.
    当直线l2的斜率存在时,设直线l2的方程为y=kx+2,即kx﹣y+2=0,
    由于圆C到l2的距离1,所以1,解得k,
    所以yx+2,即15x+8y﹣16=0,
    综上所述,直线l2的方程为x=0或15x+8y﹣16=0.
    18.(12分)已知函数f(x)=2cs2x.
    (1)求函数f(x)的单调增区间与值域;
    (2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=0,b=1,△ABC的面积为,求tanB的值.
    【解答】解:(1)f(x)=2cs2xcs2x,
    令2kπ﹣π≤2x≤2kπ,k∈Z,∴kπx≤kπ,k∈Z,
    则f(x)的单调增区间为[kπ,kπ],k∈Z,
    当2x=2kπ,即x=kπ,k∈Z时,f(x)max=1,
    当2x=2kπ+π,即x=kπ,k∈Z时,f(x)min=﹣1,
    则f(x)的值域为[,];
    (2)f(A)=0,∴cs2A0,∴cs2A,
    ∵0<A<π,∴0<2A<2π,∴2A=120°或240°,
    ∴A=60°或120°,
    又∵△ABC的面积为,∴bcsinA,∵b=1,∴c=2,
    当A=60°时,a2=b2+c2﹣2bccsA=1+4﹣2,∴a,
    则△ABC为直角三角形,则tanB,
    当A=120°时,a2=b2+c2﹣2bccsA=1+4+2,∴a,
    在△ABC中,,∴sinB,则tanB.
    19.(12分)设首项为的数列{an}的前n项积为Tn,且满足anan+1=(n+1)an﹣nan+1.
    (1)求数列{an} 的通项公式;
    (2)设数列的前n项和为Sn,求证:.
    参考公式:12+22+32+•s+n2n(n+1)(2n+1).
    【解答】解:(1)数列{an}的前n项积为Tn,且满足anan+1=(n+1)an﹣nan+1.
    则,
    又∴,
    ∴,
    即数列{}是以2为首项,1为公差的等差数列,
    则,
    则;
    (2)由(1)可得,
    则,
    则,
    则,
    则.
    20.(12分)已知双曲线.
    (1)过点N(1,4)的直线与双曲线交于S,T两点,若点N是线段ST的中点,求直线ST的方程;
    (2)直线l:y=kx+m(k≠±2)与双曲线有唯一的公共点M,过点M且与l垂直的直线分别交x轴、y轴于A(x0,0),B(0,y0)两点.当点M运动时,求点P(x0,y0)的轨迹方程,
    【解答】解:(1)设S(x1,y1),T(x2,y2),则,
    两式相减得,即,
    因为点N(1,4)是线段ST的中点,所以4,
    即直线ST的斜率为1,
    所以直线ST的方程为y﹣4=x﹣15,即y=x+3.
    联立方程组得3x2﹣6x﹣25=0,满足Δ>0,
    故直线ST的方程为x﹣y+3=0.
    (2)联立方程组得(4﹣k2)x2﹣2kmx﹣(m2+16)=0,
    因为直线l:y=kx+m(k≠±2)与双曲线有唯一的公共点M,
    ∴,得m2=4(k2﹣4),
    所以M的坐标为(,),其中km≠0,
    因为过点M且与l垂直的直线为y(x),
    令y=0,得x0,令x=0,y0,
    所以x02(4)=100100+4y02,
    故点P(x0,y0)的轨迹方程为:(y≠0),
    P的轨迹时焦点在x轴上,实轴长为20,虚轴长为10且不包含两个定点的双曲线.
    21.(12分)已知:在四棱锥P﹣ABCD中,底面ABCD为正方形,侧棱PA⊥底面ABCD,点M为PD中点,PA=AD=1.
    (1)求证:平面MAC⊥平面PCD;
    (2)求点P到平面MAC的距离.
    【解答】(1)证明:∵PA⊥平面ABCD,ABCD为正方形,以AB所在的直线为x轴,以AD所在的直线为y轴,以AP所在的直线为z轴,建立如图所示的直角坐标系.
    由已知可得A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,1),
    ∵M为PD的中点,∴,
    所以,
    所以,所以AM⊥CD,
    又点M为PD中点,PA=AD=1,所以AM⊥PD,
    ∵PD∩CD=D,PD,CD⊂平面PCD,∴AM⊥平面PCD,
    又因为AM⊂平面MAC,故平面MAC⊥平面PCD;
    (2)解:设平面MAC的法向量为,则,∴,
    令x=1,则y=﹣1,z=1,∴,
    ,设点P到平面MAC的距离为d,
    ∴,∴点P到平面MAC的距禽为.
    22.(12分)已知椭圆C:1(a>b>0)的离心率为,且过点 A(,).
    (1)求椭圆C的方程;
    (2)直线l与椭圆C交于不同的M,N两点,且直线OM,MN,ON的斜率依次成等比数列.椭圆C上是否存在一点P,使得四边形OMPN为平行四边形?若存在,求出直线l的方程;若不存在,请说明理由.
    【解答】解:(1)由离心率e,可得a2=2b2,所以椭圆的方程为:1,
    将点A(,)代入椭圆的方程可得:1,
    解得b2=1,
    所以椭圆的方程为y2=1;
    (2)由题意可得直线l的斜率存在且不为0,设直线l的方程为:x=my+t,设M(x1,y1),N(x2,y2),
    联立,整理可得:(2+m2)y2+2mty+t2﹣2=0,
    Δ=4m2t2﹣4(2+m2)(t2﹣2)>0,即t2<2+m2,且y1+y2,y1y2,x1+x2=m(y1+y2)+2t,
    因为四边形OMPN为平行四边,OP与MN互相平分,所以P(,),
    因为P在椭圆上,则()2=1,
    整理可得:4t2=2+m2,①
    又因为直线OM,MN,ON的斜率依次成等比数列,即•,即m2,
    而m2+mt•m2,
    可得2t2=m2t2,②
    由①②可得:m2=2,t2=1,符合Δ>0,
    可得m=±,t=±1,
    所以直线l的方程为:x±y﹣1=0或x±1=0.
    相关试卷

    2022-2023学年广东省深圳外国语学校高一(上)期末数学试卷: 这是一份2022-2023学年广东省深圳外国语学校高一(上)期末数学试卷,共19页。

    2022-2023学年江苏省南京外国语学校高二(上)期末数学试卷(含答案详解): 这是一份2022-2023学年江苏省南京外国语学校高二(上)期末数学试卷(含答案详解),共22页。

    2022-2023学年广东省深圳市龙岗区高二(上)期末数学试卷(含答案详解): 这是一份2022-2023学年广东省深圳市龙岗区高二(上)期末数学试卷(含答案详解),共22页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map