所属成套资源:新教材适用2023_2024学年高中数学新人教A版必修第二册课件(53份)
- 新教材适用2023_2024学年高中数学第8章立体几何初步8.6空间直线平面的垂直8.6.3平面与平面垂直第2课时平面与平面垂直的性质课件新人教A版必修第二册 课件 0 次下载
- 新教材适用2023_2024学年高中数学第8章立体几何初步习题课课件新人教A版必修第二册 课件 0 次下载
- 新教材适用2023_2024学年高中数学第9章统计9.1随机抽样9.1.2分层随机抽样9.1.3获取数据的途径课件新人教A版必修第二册 课件 0 次下载
- 新教材适用2023_2024学年高中数学第9章统计9.2用样本估计总体9.2.1总体取值规律的估计课件新人教A版必修第二册 课件 0 次下载
- 新教材适用2023_2024学年高中数学第9章统计9.2用样本估计总体9.2.2总体百分位数的估计9.2.3总体集中趋势的估计课件新人教A版必修第二册 课件 0 次下载
必修 第二册9.1 随机抽样教课内容课件ppt
展开
这是一份必修 第二册9.1 随机抽样教课内容课件ppt,共50页。PPT课件主要包含了素养目标•定方向,必备知识•探新知,抽取一部分,调查对象,个体数,未进入样本的各个个体,不透明,关键能力•攻重难,题型探究,易错警示等内容,欢迎下载使用。
9.1 随机抽样9.1.1 简单随机抽样
1.通过实例,了解简单随机抽样的含义及其解决问题的过程.2.掌握两种简单随机抽样方法:抽签法和随机数法.3.会计算样本均值,了解样本与总体的关系.在简单随机抽样的实施过程中,掌握抽签法和随机数法的抽样步骤,发展学生数据分析素养.
练一练:某学校为了解高一800名新入学同学的数学学习水平,从中随机抽取100名同学的中考数学成绩进行分析,在这个问题中,下列说法正确的是( )A.800名同学是总体B.100名同学是样本C.每名同学是个体D.样本量是100
[解析] 据题意,总体是指800名新入学同学的中考数学成绩,样本是指抽取的100名同学的中考数学成绩,个体是指每名同学的中考数学成绩,样本量是100,故只有D正确.
[提醒] 简单随机抽样有如下四个特征:(1)它要求被抽取样本的总体的个数确定,且较少,个体之间差异不明显.(2)它是从总体中逐个抽取.(3)它是一种不放回抽取.(4)它是一种等概率抽样.不仅每次从总体中抽取一个个体时,各个个体被抽到的概率都相等,而且在整个抽样过程中,各个个体被抽到的概率也相等,从而保证了这种抽样方法的公平性.
1.抽签法:先把总体中的个体编号,然后把所有编号写在外观、质地等无差别的小纸片(也可以使卡片、小球等)上作为号签,并将这些小纸片放在一个_________的盒里,充分_______.最后从盒中不放回地逐个抽取号签,使与号签上的编号对应的个体进入样本,直到抽足样本所需要的个体数.
2.随机数法(1)定义:先把总体中的个体编号,用随机数根据产生与总体中个体数量_______的整数随机数,把产生的随机数作为抽中的编号,并剔除_______的编号,直到抽足样本所需要的个体数.(2)产生随机数的方法:①用随机试验生成随机数;②用信息技术生成随机数.
想一想:抽签法与随机数法有什么异同?
练一练:全国高中数学联合竞赛是中国高中数学学科的较高等级的数学竞赛,在每年9月第二个星期日举行,在这项竞赛中取得优异成绩的全国约200名学生有资格参加由中国数学会主办的中国数学奥林匹克(CMO).某校从初赛成绩优秀的52名学生中选取5名学生参加省赛,若采用简单随机抽样抽取,则每人入选的可能性( )
练一练:1.用抽签法抽取的一个容量为5的样本,它们的变量值分别为2,3,5,7,9,则该样本的平均数为( )A.4.5 B.4.8C.5.2 D.6
2.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是( )A.90万元 B.450万元C.3万元 D.15万元
(1)关于简单随机抽样的特点有以下几种说法,其中不正确的是( )A.要求总体中的个体数有限B.从总体中逐个抽取C.这是一种不放回抽样D.每个个体被抽到的机会不一样,与先后顺序有关
(2)下列问题中最适合用简单随机抽样方法的是( )A.某学校有学生1 320人,卫生部门为了了解学生身体发育情况,准备从中抽取一个容量为300的样本B.为了准备省政协会议,某政协委员计划从1 135个村庄中抽取50个进行收入调查C.从全班30名学生中,任意选取5名进行家访D.为了解某地区癌症的发病情况,从该地区的5 000人中抽取200人进行统计
[解析] (1)简单随机抽样,除具有A,B,C三个特点外,还具有等可能性,每个个体被抽取的机会相等,与先后顺序无关.(2)A中不同年级的学生身体发育情况差别较大,B,D的总体容量较大,C的总体容量较小,适宜用简单随机抽样.
[归纳提升] 可用简单随机抽样抽取样本的依据(1)总体中的个体之间无明显差异.(2)总体中个体数N有限.(3)抽取的样本个体数n小于总体中的个体数N.(4)逐个不放回地抽取.
(1)下列4个抽样中,简单随机抽样的个数是( )①从无数个个体中抽取50个个体作为样本;②仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;③一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地逐个抽出6个号签;
④箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出1个零件进行质量检验后,再把它放回箱子里.A.0 B.1 C.2 D.3
(2)从某年级的500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是( )A.500名学生是总体B.每个学生是个体C.抽取的60名学生的体重是一个样本D.抽取的60名学生的体重是样本量
[解析] (1)根据简单随机抽样的特点逐个判断.①不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.②不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.③是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.④不是简单随机抽样,因为它是有放回抽样.综上,只有③是简单随机抽样.(2)应该是500名学生的体重是总体,故A错;每个被抽查的学生的体重是个体,故B错;抽查的60名学生的体重是一个样本,故C正确;D中样本量应为60,不是60名学生的体重.故D错.
(1)从20架钢琴中抽取5架进行质量检查,请用抽签法确定这5架钢琴;(2)某市质监局要检查某公司某个时间段生产的500克袋装牛奶的质量是否达标,现从500袋牛奶中抽取10袋进行检验.①利用随机数法抽取样本时,应如何操作?
②如果用随机试验生成部分随机数如下所示,据此写出应抽取的袋装牛奶的编号.162,277,943,949,545,354,821,737,932,354,873,520,964,384,263,491,648,642,175,331,572,455,068,877,047,447,672,172,065,025,834,216,337,663,013,785,916,955,567,199,810,507,175,128,673,580,667.
[解析] (1)第一步,将20架钢琴编号,号码是1,2,…,20.第二步,将号码分别写在外观、质地等无差别的小纸片上作为号签.第三步,将小纸片放入一个不透明的盒里,充分搅匀.第四步,从盒中不放回地逐个抽取5个号签,使与号签上编号相同的钢琴进入样本.
(2)①第一步,将500袋牛奶编号为001,002,…,500;第二步,用随机数工具产生1~500范围内的随机数;第三步,把产生的随机数作为抽中的编号,使编号对应的袋装牛奶进入样本;第四步,重复上述过程,直到产生的不同编号等于样本所需要的数量.②应抽取的袋装牛奶的编号为:162,277,354,384,263,491,175,331,455,068.
[归纳提升] 1.一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.2.应用抽签法时应注意以下几点:(1)编号时,如果已有编号可不必重新编号.(2)号签要求大小、形状完全相同.(3)号签要均匀搅拌.(4)根据实际需要采用有放回或无放回抽取.
(1)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为( )
A. 08 B.07 C.02 D.01(2)为提高学生的交通安全意识,某交警队从学校报名的30名志愿者中选取6人组成志愿宣传小组,请用抽签法设计抽样方案.
[解析] (1)从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件的数字依次为08,02,14,07,01,故第5个数为01.故选D.(2)①将30名志愿者编号,号码分别是1,2,…,30.②将号码分别写在外观、质地等无差别的小纸片上作为号签.③将小纸片放入一个不透明的盒里,充分搅匀.④从盒中不放回地逐个抽取6个号签,使与号签上编号相同的志愿者进入样本.
某学校为了调查高一年级学生的体育锻炼情况,从甲、乙、丙3个班中,按简单随机抽样的方法获得了部分学生一周的锻炼时间(单位:h),数据如表.
(1)估计这个学校高一年级的学生中,一周的锻炼时间超过 10 个小时的百分比;(2)估计这个学校高一年级学生一周的平均锻炼时间.[分析] (1)利用表中数据计算百分比;(2)计算样本的平均数来估计.
(2)从甲班抽取的5名学生的总时间为6+6.5+7+7.5+8=35.从乙班抽取的7名学生的总时间为6+7+8+9+10+11+12=63.从丙班抽取的8名学生的总时间为3+4.5+6+7.5+9+10.5+12+13.5=66.
即这个学校高一年级学生一周的平均锻炼时间约为8.2小时.
[归纳提升] 关于总体平均数总体平均数是总体的一项重要特征,但是当总体量较大时,计算总体平均数较困难.利用样本平均数估计总体平均数时抽取有代表性的样本,利用样本平均数估计总体平均数显得尤为重要.
某学校抽取100位老师的年龄,得到如下数据:
估计这个学校老师的平均年龄.
估计这个学校老师的平均年龄约为 41.1岁.
对简单随机抽样的等可能性理解不透致误在简单随机抽样中,某一个个体被抽到的可能性( )A.与第几次抽样有关,第一次抽到的可能性最大B.与第几次抽样有关,第一次抽到的可能性最小C.与第几次抽样无关,每一次抽到的可能性相等D.与第几次抽样无关,与样本量也无关
[正解] 由简单随机抽样的定义知简单随机抽样与第几次抽样无关,在每一次抽取时被抽到的可能性相等,不能认为先抽可能性大,后抽可能性小.故C正确.
对于简单随机抽样,每个个体被抽到的机会( )A.不相等 B.相等C.不确定 D.与抽样次序有关
1.抽签法确保样本代表性的关键是( )A.制签 B.搅拌均匀C.逐一抽取 D.抽取不放回[解析] 若样本具有很好的代表性,则每一个个体被抽取的机会相等,故需要对号签搅拌均匀.
2.下列调查中,调查方式选择合理的是( )A.了解某一品牌家具的甲醛含量,选择普查B.了解神舟飞船的设备零件的质量情况,选择抽样调查C.了解一批袋装食品是否含有防腐剂,选择普查D.了解某公园全年的游客流量,选择抽样调查[解析] 了解某一品牌家具的甲醛含量,选择抽样调查更符合经济效益,A错误;了解神舟飞船的设备零件的质量情况,安全是最重要的,应该采取普查,B错误;了解一批袋装食品是否含有防腐剂,选择抽样调查更符合经济效益,C错误;了解某公园全年的游客流量,选择抽样调查比较符合经济效益,D正确.故选D.
3.为了准确地调查我国某一时期的人口总量、人口分布、民族人口、城乡人口、受教育的程度、迁徙流动、就业状况等多方面的情况,需要用_______的方法进行调查.[解析] 要获得系统、全面、准确的信息,在对总体没有破坏的前提下,普查无疑是一个非常好的方法,要全面、准确地调查人口的状况,应当用普查的方法进行调查.故答案为普查.
4.在总体为N的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N的值为_________.
相关课件
这是一份高中人教A版 (2019)9.1 随机抽样教学课件ppt,共51页。PPT课件主要包含了素养目标•定方向,必备知识•探新知,一个或多个,子总体,属于且仅属于,简单随机抽样,总样本,比例分配,通过调查获取数据,通过试验获取数据等内容,欢迎下载使用。
这是一份人教A版 (2019)必修 第二册9.1 随机抽样说课课件ppt,共44页。PPT课件主要包含了预学案,共学案,每一个,一部分,那部分,个体数,答案D,不透明,不放回,样本均值等内容,欢迎下载使用。
这是一份人教A版 (2019)必修 第二册9.1 随机抽样精品ppt课件,共1页。