终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    新教材适用2023_2024学年高中数学第7章复数7.1复数的概念7.1.1数系的扩充和复数的概念素养作业新人教A版必修第二册

    立即下载
    加入资料篮
    新教材适用2023_2024学年高中数学第7章复数7.1复数的概念7.1.1数系的扩充和复数的概念素养作业新人教A版必修第二册第1页
    新教材适用2023_2024学年高中数学第7章复数7.1复数的概念7.1.1数系的扩充和复数的概念素养作业新人教A版必修第二册第2页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)必修 第二册第七章 复数7.1 复数的概念同步达标检测题

    展开

    这是一份人教A版 (2019)必修 第二册第七章 复数7.1 复数的概念同步达标检测题,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    A 组·素养自测
    一、选择题
    1.如果复数z=a2+a-2+(a2-3a+2)i为纯虚数,那么实数a的值为( A )
    A.-2 B.1
    C.2 D.1或-2
    [解析] 由题意知:eq \b\lc\{\rc\ (\a\vs4\al\c1(a2+a-2=0,a2-3a+2≠0))解得a=-2,故选A.
    2.以3i-1的虚部为实部,以-2+i的实部为虚部的复数是( C )
    A.-2+3i B.-3+i
    C.-2i+3 D.1-3i
    [解析] 3i-1的虚部为3,-2+i的实部为-2,故以3i-1的虚部为实部,以-2+i的实部为虚部的复数是3-2i,故选C.
    3.若复数z=(m2-2m-15)+(m2-16)i>0,则实数m的值等于( B )
    A.4 B.-4
    C.5 D.-3
    [解析] ∵z>0,∴eq \b\lc\{\rc\ (\a\vs4\al\c1(m2-16=0,,m2-2m-15>0,))
    即eq \b\lc\{\rc\ (\a\vs4\al\c1(m=±4,,m>5或m1,则实数m的值为_2__.
    [解析] 由题意得eq \b\lc\{\rc\ (\a\vs4\al\c1(m2-2m=0,,m2-1>1,))解得m=2.
    8.已知实数x满足-x2-x+2xi=m+i,则实数m的值为 -eq \f(3,4) .
    [解析] 由复数相等的定义可知eq \b\lc\{\rc\ (\a\vs4\al\c1(-x2-x=m,,2x=1,))解得m=-eq \f(3,4).
    三、解答题
    9.分别求满足下列条件的实数x,y的值.
    (1)2x-1+(y+1)i=x-y+(-x-y)i;
    (2)eq \f(x2-x-6,x+1)+(x2-2x-3)i=0.
    [解析] (1)∵x,y∈R,
    ∴由复数相等的定义得eq \b\lc\{\rc\ (\a\vs4\al\c1(2x-1=x-y,,y+1=-x-y,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(x=3,,y=-2.))
    (2)∵x∈R,
    ∴由复数相等的定义得eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(x2-x-6,x+1)=0,,x2-2x-3=0,))
    即eq \b\lc\{\rc\ (\a\vs4\al\c1(x=3或x=-2,且x≠-1,,x=3或x=-1,))∴x=3.
    10.实数m分别为何值时,复数z=eq \f(2m2+m-3,m+3)+(m2-3m-18)i是(1)实数;(2)虚数;(3)纯虚数.
    [解析] (1)要使所给复数为实数,必使复数的虚部为0.
    故若使z为实数,则eq \b\lc\{\rc\ (\a\vs4\al\c1(m2-3m-18=0,,m+3≠0,))
    解得m=6.所以当m=6时,z为实数.
    (2)要使所给复数为虚数,必使复数的虚部不为0.
    故若使z为虚数,则m2-3m-18≠0,且m+3≠0,
    所以当m≠6且m≠-3时,z为虚数.
    (3)要使所给复数为纯虚数,必使复数的实部为0,虚部不为0.
    故若使z为纯虚数,则eq \b\lc\{\rc\ (\a\vs4\al\c1(2m2+m-3=0,,m+3≠0,,m2-3m-18≠0,))
    解得m=-eq \f(3,2)或m=1.
    所以当m=-eq \f(3,2)或m=1时,z为纯虚数.
    B 组·素养提升
    一、选择题
    1.若sin 2θ-1+i(eq \r(2)cs θ+1)是纯虚数,则θ的值为( B )
    A.2kπ-eq \f(π,4) B.2kπ+eq \f(π,4)
    C.2kπ±eq \f(π,4) D.eq \f(kπ,2)+eq \f(π,4)(以上k∈Z)
    [解析] 由eq \b\lc\{\rc\ (\a\vs4\al\c1(sin 2θ-1=0,,\r(2)cs θ+1≠0,))得eq \b\lc\{\rc\ (\a\vs4\al\c1(2θ=2kπ+\f(π,2),,θ≠2kπ+π±\f(π,4)))(k∈Z).
    ∴θ=2kπ+eq \f(π,4)(k∈Z).
    2.(多选题)若关于x的方程3x2-eq \f(a,2)x-1=(10-x-2x2)i有实根,则实数a可以等于( AB )
    A.11 B.-eq \f(71,5)
    C.eq \f(71,5) D.-eq \f(11,5)
    [解析] 设方程的实根为x=m,
    则3m2-eq \f(a,2)m-1=(10-m-2m2)i,
    ∴eq \b\lc\{\rc\ (\a\vs4\al\c1(3m2-\f(a,2)m-1=0,,10-m-2m2=0.))
    解得a=11或a=-eq \f(71,5).故选AB.
    3.复数4-3a-a2i与a2+4ai相等,则实数a的值为( C )
    A.1 B.1或-4
    C.-4 D.0或-4
    [解析] 由题意知eq \b\lc\{\rc\ (\a\vs4\al\c1(4-3a=a2,,-a2=4a,))解得a=-4.
    二、填空题
    4.已知m,n∈R,z1=-3-4i,z2=(n2-3m-1)+(n2-m-6)i,且z1=z2,则m=_2__,n=_±2__.
    [解析] ∵z1=z2,∴eq \b\lc\{\rc\ (\a\vs4\al\c1(n2-3m-1=-3,,n2-m-6=-4,))
    解得eq \b\lc\{\rc\ (\a\vs4\al\c1(m=2,,n=-2))或eq \b\lc\{\rc\ (\a\vs4\al\c1(m=2,,n=2,))即m=2,n=±2.
    5.已知关于x的方程x2+(m+2i)x+2+2i=0(m∈R)有实数根n,且z=m+ni,则复数z等于_3-i__.
    [解析] 由题意,n2+(m+2i)n+2+2i=0,
    即eq \b\lc\{\rc\ (\a\vs4\al\c1(n2+mn+2=0,,2n+2=0,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(m=3,,n=-1,))∴z=3-i.
    三、解答题
    6.若不等式m2-(m2-3m)i

    相关试卷

    高中数学人教A版 (2019)必修 第二册7.1 复数的概念一课一练:

    这是一份高中数学人教A版 (2019)必修 第二册7.1 复数的概念一课一练,共2页。试卷主要包含了有下列四个命题,复数z=+i,a∈R等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第二册7.1 复数的概念同步测试题:

    这是一份高中数学人教A版 (2019)必修 第二册7.1 复数的概念同步测试题,共5页。试卷主要包含了复数z=1-2i的虚部为等内容,欢迎下载使用。

    人教A版 (2019)必修 第二册7.1 复数的概念达标测试:

    这是一份人教A版 (2019)必修 第二册7.1 复数的概念达标测试,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map