所属成套资源:浙江省2023-2024学年数学九年级上期末模拟试题
浙江省重点中学2023年数学九上期末模拟试题
展开
这是一份浙江省重点中学2023年数学九上期末模拟试题,共21页。试卷主要包含了下列事件属于必然事件的是,方程的解是等内容,欢迎下载使用。
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.已知点为反比例函数图象上的两点,当时,下列结论正确的是( )
A.B.
C.D.
2.用一块长40cm,宽28cm的矩形铁皮,在四个角截去四个全等的正方形后,折成一个无盖的长方形盒子,若折成的长方体的底面积为,设小正方形的边长为xcm,则列方程得( )
A.(20﹣x)(14﹣x)=360B.(40﹣2x)(28﹣2x)=360
C.40×28﹣4x2=360D.(40﹣x)(28﹣x)=360
3.方程x2=x的解是( )
A.x=1B.x=0C.x1=1,x2=0D.x1=﹣1,x2=0
4.如图,在中,是斜边上的高,则图中的相似三角形共有( )
A.1对B.2对C.3对D.4对
5.下列事件属于必然事件的是( )
A.在一个装着白球和黑球的袋中摸球,摸出红球
B.抛掷一枚硬币2次都是正面朝上
C.在标准大气压下,气温为15℃时,冰能熔化为水
D.从车间刚生产的产品中任意抽一个,是次品
6.如图所示,把一张矩形纸片对折,折痕为AB,再把以AB的中点O为顶点的平角三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是
A.正三角形B.正方形C.正五边形D.正六边形
7.如图,点A、点B是函数y=的图象上关于坐标原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积是4,则k的值是( )
A.-2B.±4C.2D.±2
8.方程的解是( )
A.0B.3C.0或–3D.0或3
9.已知二次函数图象的一部分如图所示,给出以下结论:;当时,函数有最大值;方程的解是,;,其中结论错误的个数是
A.1B.2C.3D.4
10.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是( )
①△ABC与△DEF是位似图形 ②△ABC与△DEF是相似图形
③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.
A.1B.2C.3D.4
11.对于反比例函数,下列说法不正确的是( )
A.图像分布在第一、三象限B.当时,随的增大而减小
C.图像经过点D.若点都在图像上,且,则
12.如图,在中,,D为AC上一点,连接BD,且,则DC长为( )
A.2B.C.D.5
二、填空题(每题4分,共24分)
13.在一次射击比赛中,甲、乙两名运动员 10 次射击的平均成绩都是 7 环,其中甲的成绩的方差为 1.2,乙的成绩的方差为 3.9,由此可知_____的成绩更稳定.
14.如图,的顶点都在正方形网格的格点上,则的值为________.
15.如图,OA⊥OB,等腰直角△CDE的腰CD在OB上,∠ECD=45°,将△CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为__________
16.如图,,点、都在射线上,,,是射线上的一个动点,过、、三点作圆,当该圆与相切时,其半径的长为__________.
17.如图,P是∠α的边OA上一点,且点P的坐标为(3,4),则=____________.
18.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)
三、解答题(共78分)
19.(8分)如图,已知AD•AC=AB•AE,∠DAE=∠BAC.求证:△DAB∽△EAC.
20.(8分)如图,一块等腰三角形钢板的底边长为,腰长为.
(1)求能从这块钢板上截得的最大圆的半径;
(2)用一个圆完整覆盖这块钢板,这个圆的最小半径是多少?
21.(8分)在平面直角坐标系xOy中,一次函数y=2x+b的图象与x轴的交点为A(2,0),与y轴的交点为B,直线AB与反比例函数y=的图象交于点C(﹣1,m).
(1)求一次函数和反比例函数的表达式;
(2)直接写出关于x的不等式2x+b>的解集;
(3)点P是这个反比例函数图象上的点,过点P作PM⊥x轴,垂足为点M,连接OP,BM,当S△ABM=2S△OMP时,求点P的坐标.
22.(10分)取什么值时,关于的方程有两个相等的实数根?求出这时方程的根.
23.(10分)如图,对称轴是的抛物线与轴交于两点,与轴交于点,
求抛物线的函数表达式;
若点是直线下方的抛物线上的动点,求的面积的最大值;
若点在抛物线对称轴左侧的抛物线上运动,过点作铀于点,交直线于点,且,求点的坐标;
在对称轴上是否存在一点,使的周长最小,若存在,请求出点的坐标和周长的最小值;若不存在,请说明理由.
24.(10分)某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:
(1)扇形统计图中“优秀”所对应的扇形的圆心角为 度,并将条形统计图补充完整.
(2)此次比赛有三名同学得满分,分别是甲、乙、丙,现从这三名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丙的概率.
25.(12分)如图,AC为圆O的直径,弦AD的延长线与过点C的切线交于点B,E为BC中点,AC= ,BC=4.
(1)求证:DE为圆O的切线;
(2)求阴影部分面积.
26.如图,为的直径,切于点,交的延长线于点,且.
(1)求的度数.
(2)若的半径为2,求的长.
参考答案
一、选择题(每题4分,共48分)
1、A
【分析】根据反比例函数在第一象限内的增减性即可得出结论.
【详解】∵反比例函数在时,y随着x的增大而减小,
∴当时,
故选:A.
本题主要考查反比例函数的性质,掌握反比例函数的性质是解题的关键.
2、B
【分析】由题意设剪掉的正方形的边长为xcm,根据长方体的底面积为列出方程即可.
【详解】解:设剪掉的正方形的边长为xcm,
则(28﹣2x)(40﹣2x)=1.
故选:B.
本题考查一元二次方程的应用,解答本题的关键是仔细审题并建立方程.
3、C
【解析】试题解析:x2-x=0,
x(x-1)=0,
x=0或x-1=0,
所以x1=0,x2=1.
故选C.
考点:解一元二次方程-因式分解法.
4、C
【分析】根据相似三角形的判定定理及已知即可得到存在的相似三角形.
【详解】∵∠ACB=90°,CD⊥AB
∴△ABC∽△ACD,△ACD∽△CBD,△ABC∽△CBD
所以有三对相似三角形,
故选:C.
考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似.
5、C
【分析】必然事件就是一定发生的事件,即发生的概率是1的事件,据此逐一判断即可.
【详解】A.在一个装着白球和黑球的袋中摸球,摸出红球,一定不会发生,是不可能事件,不符合题意,
B.抛掷一枚硬币2次都是正面朝上,可能朝上,也可能朝下,是随机事件,不符合题意,
C.在标准大气压下,气温为15℃时,冰能熔化为水,是必然事件,符合题意.
D.从车间刚生产的产品中任意抽一个,可能是正品,也可能是次品,是随机事件,不符合题意,
故选:C.
本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
6、D
【解析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
【详解】由第二个图形可知:∠AOB被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.
故选D.
本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题动手操作是解题的关键.
7、C
【详解】解:∵反比例函数的图象在一、三象限,
∴k>0,
∵BC∥x轴,AC∥y轴,
∴S△AOD=S△BOE=k,
∵反比例函数及正比例函数的图象关于原点对称,
∴A、B两点关于原点对称,
∴S矩形OECD=1△AOD=k,
∴S△ABC=S△AOD+S△BOE+S矩形OECD=1k=4,解得k=1.
故选C.
本题考查反比例函数的性质.
8、D
【解析】运用因式分解法求解.
【详解】由得x(x-3)=0
所以,x1=0,x2=3
故选D
掌握因式分解法解一元二次方程.
9、A
【解析】由抛物线开口方向得到a<1,根据抛物线的对称轴为直线x==-1得b<1,由抛物线与y轴的交点位置得到c>1,则abc>1;观察函数图象得到x=-1时,函数有最大值;
利用抛物线的对称性可确定抛物线与x轴的另一个交点坐标为(-3,1),则当x=1或x=-3时,函数y的值等于1;观察函数图象得到x=2时,y<1,即4a+2b+c<1.
【详解】解:∵抛物线开口向下,
∴a1,所以①正确;
∵抛物线开口向下,对称轴为直线x=-1,
∴当x=-1时,函数有最大值,所以②正确;
∵抛物线与x轴的一个交点坐标为(1,1),而对称轴为直线x=-1,
∴抛物线与x轴的另一个交点坐标为(−3,1),
∴当x=1或x=-3时,函数y的值都等于1,
∴方程ax2+bx+c=1的解是:x1=1,x2=-3,所以③正确;
∵x=2时,y
相关试卷
这是一份海西市重点中学2023-2024学年九上数学期末检测模拟试题含答案,共7页。试卷主要包含了不等式的解集是,抛物线,下列说法正确的是等内容,欢迎下载使用。
这是一份梅州市重点中学2023-2024学年九上数学期末联考模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔,对于反比例函数y=,如果,那么下列各式中不成立的是等内容,欢迎下载使用。
这是一份2023-2024学年甘南市重点中学九上数学期末联考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,方程的根的情况是等内容,欢迎下载使用。