资料中包含下列文件,点击文件名可预览资料内容
还剩29页未读,
继续阅读
成套系列资料,整套一键下载
第10章《 概率(复习课件)(4大考点3种思想)》课件+分层练习(基础+提升,含答案解析)
展开
这是一份第10章《 概率(复习课件)(4大考点3种思想)》课件+分层练习(基础+提升,含答案解析),文件包含第10章《概率复习课件4大考点3种思想》课件人教版高中数学必修二pptx、第10章《概率单元测试》分层练习基础+提升含答案解析docx等2份课件配套教学资源,其中PPT共37页, 欢迎下载使用。
第10章 概率全章复习人教版高中数学必修二1.通过具体实例,了解随机事件发生的不确定性和频率的稳定性.了解概率的意义及频率与概率的区别.2.掌握随机事件概率的应用,提升数学抽象和数学运算素养.一、随机事件的概率例1 电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;解 由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000,第四类电影中获得好评的电影部数是200×0.25=50.(2)随机选取1部电影,估计这部电影没有获得好评的概率;解 由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1=56+10+45+50+160+51=372.(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大(只需写出结论)?解 增加第五类电影的好评率,减少第二类电影的好评率.二、互斥事件、对立事件与相互独立事件1.互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生.因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况.2.若事件A,B满足P(AB)=P(A)P(B),则事件A,B相互独立,且当A与B相互独立时,3.掌握互斥事件和对立事件的概率公式、相互独立事件的判断方法及应用,提升逻辑推理和数学运算素养.例2 (1)若干个人站成一排,其中为互斥事件的是A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”√解析 由互斥事件的定义可得,“甲站排头”与“乙站排头”为互斥事件.(2)下列各对事件中为相互独立事件的有______(填序号).①甲组3名男生,2名女生;乙组2名男生,3名女生.今从甲、乙两组中各选一名同学参加游园活动,“从甲组中选出1名男生”与“从乙组中选出1名女生”;②一盒内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出一个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的仍是白球”;③一筐中有6个苹果和3个梨,“从中任意取出一个,取出的是苹果”与“把苹果再放回筐中,再从筐中任意取出1个,取出的是梨”.①③解析 判断两个事件A,B是否相互独立,可以看事件A的发生对事件B发生的概率是否有影响,也可以用定义P(AB)=P(A)P(B)来判断.1.古典概型是一种最基本的概率模型,是学习其他概率模型的基础,解题时要紧紧抓住古典概型的两个基本特征,即有限性和等可能性.在应用公式P(A)= 时,关键在于正确理解试验的发生过程,求出试验的样本空间的样本点总数n和事件A的样本点个数m.2.掌握古典概型的概率公式及其应用,提升数学抽象、数据分析的数学素养.例3 某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;解 由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有45-30=15(人),(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.解 从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的样本空间Ω={A1B1,A1B2,A1B3,A2B1,A2B2,A2B3,A3B1,A3B2,A3B3,A4B1,A4B2,A4B3,A5B1,A5B2,A5B3},共含15个样本点.根据题意这些样本点出现的可能性相等.事件“A1被选中且B1未被选中”所包含的样本点有A1B2,A1B3,共2个.1.相互独立事件的概率通常和互斥事件的概率综合在一起考查,这类问题具有一个明显的特征,那就是在题目的条件中已经出现一些概率值,解题时先要判断事件的性质(是互斥还是相互独立),再选择相应的公式计算求解.2.掌握相互独立事件的概率公式的应用,提升数学抽象和逻辑推理的数学素养.例4 设甲、乙、丙三台机器是否需要照顾相互之间没有影响,已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.(1)分别求甲、乙、丙每台机器在这一小时内需要照顾的概率;解 记甲、乙、丙三台机器在某一小时内需要照顾分别为事件A,B,C,则A,B,C两两相互独立.由题意得P(AB)=P(A)P(B)=0.05,P(AC)=P(A)P(C)=0.1,P(BC)=P(B)P(C)=0.125,∴P(A)=0.2,P(B)=0.25,P(C)=0.5,∴甲、乙、丙每台机器在这一小时内需要照顾的概率分别为0.2,0.25,0.5.(2)计算这一小时内至少有一台机器需要照顾的概率.解 ∵A,B,C两两相互独立,思想方法解读:灵活应用对立事件的概率关系(P(A)+P()=1)简化问题,是求解概率问题最常用的方法.例5 一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n
第10章 概率全章复习人教版高中数学必修二1.通过具体实例,了解随机事件发生的不确定性和频率的稳定性.了解概率的意义及频率与概率的区别.2.掌握随机事件概率的应用,提升数学抽象和数学运算素养.一、随机事件的概率例1 电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;解 由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000,第四类电影中获得好评的电影部数是200×0.25=50.(2)随机选取1部电影,估计这部电影没有获得好评的概率;解 由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1=56+10+45+50+160+51=372.(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大(只需写出结论)?解 增加第五类电影的好评率,减少第二类电影的好评率.二、互斥事件、对立事件与相互独立事件1.互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生.因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况.2.若事件A,B满足P(AB)=P(A)P(B),则事件A,B相互独立,且当A与B相互独立时,3.掌握互斥事件和对立事件的概率公式、相互独立事件的判断方法及应用,提升逻辑推理和数学运算素养.例2 (1)若干个人站成一排,其中为互斥事件的是A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”√解析 由互斥事件的定义可得,“甲站排头”与“乙站排头”为互斥事件.(2)下列各对事件中为相互独立事件的有______(填序号).①甲组3名男生,2名女生;乙组2名男生,3名女生.今从甲、乙两组中各选一名同学参加游园活动,“从甲组中选出1名男生”与“从乙组中选出1名女生”;②一盒内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出一个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的仍是白球”;③一筐中有6个苹果和3个梨,“从中任意取出一个,取出的是苹果”与“把苹果再放回筐中,再从筐中任意取出1个,取出的是梨”.①③解析 判断两个事件A,B是否相互独立,可以看事件A的发生对事件B发生的概率是否有影响,也可以用定义P(AB)=P(A)P(B)来判断.1.古典概型是一种最基本的概率模型,是学习其他概率模型的基础,解题时要紧紧抓住古典概型的两个基本特征,即有限性和等可能性.在应用公式P(A)= 时,关键在于正确理解试验的发生过程,求出试验的样本空间的样本点总数n和事件A的样本点个数m.2.掌握古典概型的概率公式及其应用,提升数学抽象、数据分析的数学素养.例3 某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;解 由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有45-30=15(人),(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.解 从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的样本空间Ω={A1B1,A1B2,A1B3,A2B1,A2B2,A2B3,A3B1,A3B2,A3B3,A4B1,A4B2,A4B3,A5B1,A5B2,A5B3},共含15个样本点.根据题意这些样本点出现的可能性相等.事件“A1被选中且B1未被选中”所包含的样本点有A1B2,A1B3,共2个.1.相互独立事件的概率通常和互斥事件的概率综合在一起考查,这类问题具有一个明显的特征,那就是在题目的条件中已经出现一些概率值,解题时先要判断事件的性质(是互斥还是相互独立),再选择相应的公式计算求解.2.掌握相互独立事件的概率公式的应用,提升数学抽象和逻辑推理的数学素养.例4 设甲、乙、丙三台机器是否需要照顾相互之间没有影响,已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.(1)分别求甲、乙、丙每台机器在这一小时内需要照顾的概率;解 记甲、乙、丙三台机器在某一小时内需要照顾分别为事件A,B,C,则A,B,C两两相互独立.由题意得P(AB)=P(A)P(B)=0.05,P(AC)=P(A)P(C)=0.1,P(BC)=P(B)P(C)=0.125,∴P(A)=0.2,P(B)=0.25,P(C)=0.5,∴甲、乙、丙每台机器在这一小时内需要照顾的概率分别为0.2,0.25,0.5.(2)计算这一小时内至少有一台机器需要照顾的概率.解 ∵A,B,C两两相互独立,思想方法解读:灵活应用对立事件的概率关系(P(A)+P()=1)简化问题,是求解概率问题最常用的方法.例5 一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n
相关资料
更多