所属成套资源:小学数学五年级上学期期末必刷常考题 北师大版
质数与合数 小学数学五年级上学期期末必刷常考题 北师大版
展开
这是一份质数与合数 小学数学五年级上学期期末必刷常考题 北师大版,共13页。试卷主要包含了两个质数的积一定是,最小质数与最小合数的和是,下列说法正确的是,在横线上填上合适的质数等内容,欢迎下载使用。
1.两个质数的积一定是
A.偶数B.奇数C.质数D.合数
2.最小质数与最小合数的和是
A.1B.2C.4D.6
3.在的自然数中,是奇数但不是质数的有 个.
A.9B.6C.3D.2
4.用□表示一个质数,用〇表示一个合数,下面 的结果一定是合数。
A.□〇B.〇□C.□〇
5.下列说法正确的是
A.质数只有一个因数
B.合数至少有3个因数
C.偶数都是合数
D.非0自然数分为奇数,偶数和1
二.填空题(共5小题)
6.100以内最大的质数是 ,最小的合数是 .
7.两个质数的和是20,积是91,这两个质数是 和 。
8.42的因数中,质数有 ,合数有 ,既不是质数也不是合数有 。
9.在1、2、3、7、8、9中,是偶数但不是合数的数是 ,是奇数但不是质数的数是 ,既是奇数又是质数的数是 ,既不是质数也不是合数的数是 。
10.在横线上填上合适的质数。
三.判断题(共3小题)
11.两个质数的积一定是合数. (判断对错)
12.两个不同质数的公因数只有1. .(判断对错)
13.自然数中,不是质数,就是合数. (判断对错)
四.应用题(共3小题)
14.要把18块饼干分成两份,并且每份的个数都是质数,这两份饼干可能各是多少块?
15.一个长方形的长和宽的数值都是质数,周长是56厘米,这个长方形的面积大约是多少?
16.哥哥和妹妹的年龄是两个质数,已知这两个质数的积是85,则哥哥和妹妹分别是多少岁?
2023~2024学年上学期小学数学北师大版五年级期末必刷常考题之质数与合数
参考答案与试题解析
一.选择题(共5小题)
1.两个质数的积一定是
A.偶数B.奇数C.质数D.合数
【答案】
【考点】合数与质数的初步认识;奇数与偶数的初步认识
【专题】数的整除;数感
【分析】质数是指除了1和它本身的两个因数以外再没有其他的因数的数。合数是指就除了1和它本身的两个因数以外还有其他的因数的数。不能被2整除的自然数叫奇数,能被2整除的自然数叫偶数。
【解答】解:比如质数2和5的积是偶数,也是合数;质数3和5的积是奇数,也是合数;两个质数的积至少有3个因数,所以一定是合数;所以两个质数的积一定是合数,不一定是奇数或偶数。
故选:。
【点评】本题主要考查学生奇偶数、质数、合数定义的掌握和灵活运用。
2.最小质数与最小合数的和是
A.1B.2C.4D.6
【答案】
【考点】合数与质数的初步认识
【专题】常规题型;数感
【分析】合数:指自然数中除了能被1和本身整除外,还能被其它的数整除的数。“0”“1”既不是质数也不是合数。4是最小的合数。
质数:一个数只有1和它本身两个因数,这个数叫作质数。2是最小的质数。
【解答】解:最小的质数是2,最小的合数是4,
故选:。
【点评】考查了质数和合数的定义理解。
3.在的自然数中,是奇数但不是质数的有 个.
A.9B.6C.3D.2
【考点】:合数与质数
【专题】413:数的整除
【分析】根据奇数、质数的意义,在自然数中,不是2的倍数的数叫做奇数;一个自然数,如果只有1和它本身两个因数,这样的数叫做质数.据此解答即可.
【解答】解:在的自然数中,奇数有:1、3、5、7、9、11、13、15、17、19;
是奇数但不是质数的有1、9、15,共3个.
故选:.
【点评】此题考查的目的是理解掌握奇数、质数的意义,以及奇数与质数的区别.
4.用□表示一个质数,用〇表示一个合数,下面 的结果一定是合数。
A.□〇B.〇□C.□〇
【答案】
【考点】合数与质数的初步认识
【专题】数感
【分析】根据质数与合数的意义,一个自然数,如果只有1和它本身两个因数,这样的数叫做质数;一个自然数如果除了1和它本身还有别的因数,这样的数叫做合数;据此举例解答即可。
【解答】解:□表示一个质数,用〇表示一个合数;
选项:质数加合数可能是质数,也可能是合数;
选项:合数减质数可能是质数,也可能是1,还可能是合数;
选项:质数乘合数结果一定是合数。
故选:。
【点评】解答本题要明确质数,合数的概念。
5.下列说法正确的是
A.质数只有一个因数
B.合数至少有3个因数
C.偶数都是合数
D.非0自然数分为奇数,偶数和1
【答案】
【考点】奇数与偶数的初步认识;合数与质数的初步认识
【专题】数感;综合判断题
【分析】根据质数和合数、奇数和偶数的定义判断各选项是否正确。
【解答】解:质数是只有1和本身两个因数的数,所以选项说法错误;
合数是除了1和本身之外还有别的因数的数,所以合数至少有3个因数,选项说法正确;
偶数是能被2整除的数,其中2是是质数,不是合数,所以选项说法错误;
偶数是能被2整除的数,奇数是不能被2整除的数,非0自然数不是奇数就是偶数,1是奇数,所以选项说法错误。
故选:。
【点评】解答此题的关键是掌握质数和合数、奇数和偶数的意义。
二.填空题(共5小题)
6.100以内最大的质数是 97 ,最小的合数是 .
【考点】合数与质数的初步认识
【专题】数的整除
【分析】根据质数与合数的意义,一个自然数,如果只有1和它本身两个因数,这样的数叫做质数.一个自然数,如果除了1和它本身还有别的因数,这样的数叫做合数;由此可知:100以内最大的质数是97,最小的合数是4;据此解答即可.
【解答】解:100以内最大的质数是97,最小的合数4;
故答案为:97,4.
【点评】此题主要考查质数与合数的意义.
7.两个质数的和是20,积是91,这两个质数是 7 和 。
【考点】合数与质数的初步认识
【专题】整数的认识;数据分析观念
【分析】根据分解质因数的方法,把91分解质因数即可。
【解答】解:,因此两个质数的和是20,积是91,这两个质数分别是7和13。
故答案为:7,13。
【点评】此题考查了代入排除法做选择题的方法,要熟练掌握,比一个一个算要大大加快速度。
8.42的因数中,质数有 2、3、7 ,合数有 ,既不是质数也不是合数有 。
【答案】2、3、7,6、14、21、42,1。
【考点】合数与质数的初步认识
【专题】综合填空题;数据分析观念
【分析】先找出42的因数,再根据要求分别找出质数、合数和既不是质数也不是合数的数。
【解答】解:42的因数有:1、2、3、6、7、14、21、42。
质数:2、3、7。
合数:6、14、21、42。
1既不是质数也不是合数。
则42的因数中,质数有2、3、7,合数有6、14、21、42,既不是质数也不是合数有1。
故答案为:2、3、7,6、14、21、42,1。
【点评】本题考查了合数与质数的初步认识,要求学生掌握。
9.在1、2、3、7、8、9中,是偶数但不是合数的数是 2 ,是奇数但不是质数的数是 ,既是奇数又是质数的数是 ,既不是质数也不是合数的数是 。
【答案】2,9,3和7,1。
【考点】合数与质数的初步认识;奇数与偶数的初步认识
【专题】综合填空题;数据分析观念
【分析】合数是在大于1的整数中,除了能被1和本身整除外,还能被其他数除外)整除的数;质数是一个自然数,只有1和它本身两个因数;偶数是在整数中,能被2整除的数;奇数是在整数中,不能被2整除的数;一个数除了1和它本身,还有别的因数,这个数叫做合数。
【解答】解:在1、2、3、7、8、9中,是偶数但不是合数的数是2,是奇数但不是质数的数是9,既是奇数又是质数的数是3和7,既不是质数也不是合数的数是1。
故答案为:2,9,3和7,1。
【点评】此题考查了合数与质数、奇数与偶数的初步认识,要求学生能够掌握。
10.在横线上填上合适的质数。
3
【答案】3,17;2,5,7;5,13;2,7,23。(答案不唯一)
【考点】合数与质数的初步认识
【专题】整数的认识
【分析】一个数只有1和它本身两个因素,这样的数叫做质数,据此进行解答。
20以内的质数数有2、3、5、7、11、13、17、19,和为20的两个质数是3和17,或7和13,故,,接下来同理分析解答其他空。
【解答】解:
故答案为:3,17;2,5,7;5,13;2,7,23。(答案不唯一)
【点评】熟练掌握质数的意义是解答本题的关键。
三.判断题(共3小题)
11.两个质数的积一定是合数. (判断对错)
【答案】
【考点】合数与质数的初步认识
【专题】数的整除
【分析】一个数除了1和它本身还有其它因数,这样的数就是合数.
【解答】解:2和3是两个质数,这两个质数相乘得到的积是6,故是合数。
故答案为:.
【点评】本题的主要考查了学生对合数意义的掌握情况.
12.两个不同质数的公因数只有1. 正确 .(判断对错)
【答案】正确
【考点】合数与质数的初步认识
【分析】根据质数和互质数的意义,一个自然数如果只有1和它本身两个因数,这样的数叫做质数.公因数只有1的两个是叫做互质数.由此解答.
【解答】解:根据质数和互质数的意义得,两个不同质数的公因数只有1,这种说法是正确的.
故答案为:正确.
【点评】此题的解答只有明确质数和互质数的概念.
13.自然数中,不是质数,就是合数. (判断对错)
【答案】
【考点】合数与质数
【专题】数的整除
【分析】举出一个反例,自然数除外)中有既不是质数也不是合数的数,进行证明.
【解答】解:自然数1既不是质数也不是合数.
所以自然数除外)不是质数,就是合数的说法是错误的.
故答案为:.
【点评】本题主要考查质数合数的意义,注意自然数1既不是质数也不是合数.
四.应用题(共3小题)
14.要把18块饼干分成两份,并且每份的个数都是质数,这两份饼干可能各是多少块?
【答案】5和13块;7和11块。
【考点】合数与质数的初步认识
【专题】数据分析观念
【分析】根据合数与质数的初步认识即可解答。
【解答】解:
答:这两份饼干可能5和13块;7和11块。
【点评】本题主要考查合数与质数的初步认识。
15.一个长方形的长和宽的数值都是质数,周长是56厘米,这个长方形的面积大约是多少?
【答案】187平方厘米。(答案不唯一)
【考点】合数与质数;长方形、正方形的面积
【专题】数的认识
【分析】根据“长方形的一条长和宽的和周长”计算出一条长和宽的和是:(厘米),长和宽都是质数,找出相加等于28的质数,然后根据长方形的面积长宽分别计算得出即可。
【解答】解:(厘米)
(平方厘米)
答:这个长方形的面积是187平方厘米。
【点评】此题考查的是长方形周长和面积计算的灵活运用情况,还考查了对质数的掌握情况。
16.哥哥和妹妹的年龄是两个质数,已知这两个质数的积是85,则哥哥和妹妹分别是多少岁?
【答案】17岁,5岁。
【考点】合数与质数的初步认识
【专题】文字题;数感
【分析】把85写成两个质数相乘,其中较大的数是哥哥的年龄,较小的数是妹妹的年龄。
【解答】解:因为,所以哥哥17岁,妹妹5岁。
答:哥哥17岁,妹妹5岁。
【点评】解答此题的关键在于知道85是两个质数17和5的积。
考点卡片
1.奇数与偶数的初步认识
【知识点解释】
偶数:是2的倍数的数叫做偶数,又叫做双数,如:2、4、6、8等
奇数:不是2的倍数的数叫做奇数,又叫做单数,如:1、3、5、7等.
【知识点归纳】
奇数和偶数的性质:
奇数+奇数=偶数,奇数﹣奇数=偶数
奇数+偶数=奇数,奇数﹣偶数=奇数
奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数
【命题方向】
常考题型:
偶数和奇数的积为偶数. √ .(判断题)
分析:根据偶数和奇数的性质:奇数×奇数=奇数,奇数×偶数=偶数;进行判断即可.
解:根据偶数和奇数的性质可得:偶数和奇数的积为偶数;
故答案为:√.
点评:此题考查了奇数和偶数的性质.
2.合数与质数的初步认识
【知识点解释】
合数:指自然数中除了能被1和本身整除外,还能被其他的数整除的数.“0”“1”既不是质数也不是合数.
质数:一个数只有1和它本身两个因数,这个数叫作质数(素数)
【命题方向】
常考题型:
例1:所有的质数都是奇数. × .(判断对错)
分析:只有1和它本身两个因数的自然数为质数.不能被2整除的数为奇数,也就是说,奇数除了没有因数2外,可以有其他因数,如9、15等.
解:根据质数和奇数的定义,“所有的质数都是奇数”的说法是错误的.
故答案为:×.
点评:本题混淆了质数和奇数的定义.
例2:已知a×b+3=x,其中a、b均为小于1000的质数,x是奇数,那么x的最大值是 1997 .
分析:x是奇数,因为偶数+奇数=奇数,3为奇数,所以,a×b定为偶数,则a、b必有一个为最小的质数2,小于1000的最大的质数为997,所以x的最大值为2×997+3=1997.
解:x是奇数,a×b一 定为偶数,
则a、b必有一个为最小的质数2,
小于1000的最大的质数为997,
所以x的最大值为2×997+3=1997.
故答案为:1997.
点评:在自然数中,注意特殊的数2既为偶数,同时也为质数.
3.长方形、正方形的面积
【知识点归纳】
长方形面积=长×宽,用字母表示:S=ab
正方形面积=边长×边长,用字母表示:S=a2.
【命题方向】
常考题型:
例1:一个长方形的周长是48厘米,长和宽的比是7:5,这个长方形的面积是多少?
分析:由于长方形的周长=(长+宽)×2,所以用48除以2先求出长加宽的和,再根据长和宽的比是7:5,把长看作7份,宽看作5份,长和宽共7+5份,由此求出一份,进而求出长和宽分别是多少,最后根据长方形的面积公式S=ab求出长方形的面积即可.
解:一份是:48÷2÷(7+5),
=24÷12,
=2(厘米),
长是:2×7=14(厘米),
宽是:2×5=10(厘米),
长方形的面积:14×10=140(平方厘米),
点评:本题考查了按比例分配的应用,同时也考查了长方形的周长公式与面积公式的灵活运用.
答:这个长方形的面积是140平方厘米.
例2:小区前面有一块60米边长的正方形空坪,现要在空坪的中间做一个长32米、宽28米的长方形花圃,其余的植上草皮.(如图)
①花圃的面积是多少平方米?
②草皮的面积是多少平方米?
分析:(1)长方形的面积=长×宽,代入数据即可求解;
(2)草皮的面积=正方形的面积﹣长方形的面积,利用正方形和长方形的面积公式即可求解.
解:(1)32×28=896(平方米);
(2)60×60﹣896,
=3600﹣896,
=2704(平方米);
答:花圃的面积是896平方米,草皮的面积是2704平方米.
点评:此题主要考查正方形和长方形的面积的计算方法.
【解题思路点拨】
(1)常规题求正方形面积,先求出边长,代入公式即可求得;求长方形面积,分别求出长和宽,代入公式即可求得,面积公式要记牢.
(2)其他求法可通过分割补,灵活性高.
相关试卷
这是一份质数和合数-2023-2024学年小学数学五年级下学期 期中必刷常考题 人教版(含解析),共8页。试卷主要包含了如果是合数,那么的因数,20以内的质数共有 个,在下面各组数中,都是质数的是,小明的号码是由9位数字组成的等内容,欢迎下载使用。
这是一份数对与位置--小学数学五年级上学期期末必刷常考题 人教版,共12页。试卷主要包含了体操比赛时,六等内容,欢迎下载使用。
这是一份小数除法--小学数学五年级上学期期末必刷常考题 人教版,共11页。试卷主要包含了与的商相等的式子是,的商保留两位小数是,计算,当商是3时,余数是 ,直接写得数,竖式计算,怎样简便怎样计算,计算,能简算的要用简便方法计算等内容,欢迎下载使用。