精品解析:广东省深圳市罗湖区深圳中学2022-2023学年中考二模数学试卷
展开第一部分 选择题
一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)
1. 比较实数0,,2,的大小,其中最小的实数为( )
A. 0B. C. 2D.
2. 作为我国核电走向世界“国家名片”,“华龙一号”是当前核电市场接受度最高的三代核电机型之一,是我国核电企业研发设计的具有完全自主知识产权的三代压水堆核电创新成果,中核集团“华龙一号”示范工程全面建成后,每台机组年发电能力近200亿千瓦时.200亿用科学记数法表示为( )
A. B. C. D.
3. 下列运算正确的是( )
A. B.
C. D.
4. 如图,直线,直线分别交,于点,,以点为圆心,长为半径画弧,若在弧上存在点使,则的度数是( )
A. B. C. D.
5. 通过小颖和小明的对话,我们可以判断他们共同搭的几何体是( )
A. B. C. D.
6. 如图是小明某一天测得的7次体温情况的折线统计图.下列说法:①测得的最高体温与最低体温的差是0.6℃;②这组数据的众数是36.8℃;③这组数据的中位数是36.6℃;其中正确的有( )
A. 0个B. 1个C. 2个D. 3个
7. 2022年世界杯足球赛举世瞩目,某大型企业为奖励年度优秀员工,预定了小组赛和决赛两个阶段的门票共20张作为奖品,总价为74000元.已知小组赛门票每张2800元,决赛门票每张6400元,设该企业预定了小组赛门票张,决赛门票张,根据题意可列方程组为( )
A. B.
C. D.
8. 下列命题是真命题的是( )
A. 每个内角都相等的多边形是正多边形B. 对角线相等的平行四边形是矩形
C. 两直线平行,同位角互补D. 过线段中点的直线是线段的垂直平分线
9. 函数与在同一平面直角坐标系中的图象可能是( )
A. B.
C. D.
10. 如图,在位于轴右侧且半径为6的,从的位置沿直线向上平移,交直线于点,且是与轴的一个公共点,若,则四边形的面积是( )
A. 42B. 64C. 68D. 48
第二部分 非选择题
二、填空题(本大题共5小题,每小题3分,共15分)
11. 分解因式:=______.
12. 若关于一元二次方程的解,则的值是______.
13. “二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大寒”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是______.
14. 如图,在平面直角坐标系中,点P是第一象限内的一点,其纵坐标为2,过点P作轴于点Q,以为边向右侧作等边,若反比例函数的图象经过点P和点M,则k的值为______.
15. 如图,在中,点在边上,,,交的延长线于点,若,,则______.
三、解答题(本大题共7小题,其中第16题5分,第17题6分,第18题8分,第19题8分,第20题8分,第21题10分,第22题10分,共55分)
16. 计算:.
17. 先化简,再求值:,其中.
18. 设中学生体质健康综合评定成绩为x分,满分为100分,规定:为A级,为B级,为C级,为D级.现随机抽取福海中学部分学生的综合评定成绩,请根据图中的信息,解答下列问题:
(1)在这次调查中,一共抽取了 ___________名学生, ___________;
(2)补全条形统计图;
(3)扇形统计图中C级对应的圆心角为 ___________度;
(4)若该校共有2000名学生,请你估计该校D级学生有多少名?
19. 如图是的外接圆,点O在上,的角平分线交于点D,连接,,过点D作的平行线与的延长线相交于点P.
(1)求证:是切线;
(2)若,,求与的值.
20. 习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1.5万元,用18万元购买甲种农机具的数量和用12万元购买乙种农机具的数量相同.
(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?
(2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过72.6万元,则甲种农机具最多能购买多少件?
21. 目标检测是一种计算机视觉技术,旨在检测汽车、建筑物和人类等目标.这些目标通常可以通过图像或视频来识别.在常规的目标检测任务中,如图1,一般使用边同轴平行的矩形框进行标示.
在平面直角坐标系中,针对目标图形,可以用其投影矩形来检测.图形投影矩形定义如下:矩形的两组对边分别平行于轴,轴,图形的顶点在矩形的边上或内部,且矩形的面积最小.设矩形的较长的边与较短的边的比为,我们称常数为图形的投影比.如图2,矩形为的投影矩形,其投影比.
(1)如图3,点,,则投影比的值为______;
(2)如图4,若点,点且投影比,则点的坐标可能是______(填写序号);
;;;.
(3)如图5,已知点,在函数(其中)的图象上有一点,若的投影比,求点的坐标.
22. 已知四边形中,P为射线上一点,过P作交射线于点E,过P作交射线于点F.
(1)如图1,四边形是正方形,连接交于G,则与数量关系为______;若,,______(填数字);
(2)如图2,四边形是菱形,且直线恰好经过点D,连接,求的值;
(3)如图3,四边形是菱形,连接并延长与交于点O,若O是的中点且为等腰三角形,直接写出:①的值,②的值.
精品解析:2022年广东省深圳市罗湖区罗湖外语初中学校中考数学三模试卷: 这是一份精品解析:2022年广东省深圳市罗湖区罗湖外语初中学校中考数学三模试卷,文件包含精品解析2022年广东省深圳市罗湖区罗湖外语初中学校中考数学三模试卷原卷版docx、精品解析2022年广东省深圳市罗湖区罗湖外语初中学校中考数学三模试卷解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
2023年广东省深圳市罗湖区中考数学二模试卷(含解析): 这是一份2023年广东省深圳市罗湖区中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省深圳市罗湖区深圳中学中考二模数学试卷(含解析): 这是一份2023年广东省深圳市罗湖区深圳中学中考二模数学试卷(含解析),共25页。