高中数学北师大版 (2019)必修 第二册第一章 三角函数4 正弦函数和余弦函数的概念及其性质4.2 单位圆与正弦函数、余弦函数的基本性质教案设计-教案下载-教习网
终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    1.4.2 单位圆与正弦函数、余弦函数的基本性质(教案)-北师大版高中数学必修二

    立即下载
    加入资料篮
    1.4.2 单位圆与正弦函数、余弦函数的基本性质(教案)-北师大版高中数学必修二第1页
    1.4.2 单位圆与正弦函数、余弦函数的基本性质(教案)-北师大版高中数学必修二第2页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学北师大版 (2019)必修 第二册第一章 三角函数4 正弦函数和余弦函数的概念及其性质4.2 单位圆与正弦函数、余弦函数的基本性质教案设计

    展开

    这是一份高中数学北师大版 (2019)必修 第二册第一章 三角函数4 正弦函数和余弦函数的概念及其性质4.2 单位圆与正弦函数、余弦函数的基本性质教案设计,共4页。
    课题
    1.4.2 单位圆与正弦函数、余弦函数的基本性质
    课型
    新授课
    教学
    目标
    知识与能力目标
    理解余弦函数y=csx的图象可由正弦函数y=sinx的图象向左平移/2得到;
    了解正弦曲线、余弦曲线的概念;
    掌握五点法作图;
    能够运用图像变换画较复杂的图像。
    过程与方法目标
    通过对余弦函数的图象和五点法的探究,让学生体验图象生成过程;在教师引导下的师生、生生交流、合作与探究中,培养学生的观察能力、分析能力与归纳能力,以及合情推理的能力,并获得成功体验,体会到数学知识运用的价值,
    3.情感态度价值观目标
    经历图象生成的过程,体会到数学学习的乐趣,感受数学之美,培养学生学习数学的主动性和勇于探索的精神,增进学生学好数学的自信心。
    重点难点
    1.重点:余弦函数的图像和五点法。
    2.难点:余弦函数图象和五点法的探究过程
    温故知新
    上节课我们学习了作函数图像的方法:描点法、图像变换法观察y=Sinx,x∈[0,2π]的图象,在作图连线过程中起关键作用的是哪几个点?
    能否利用这些点作出正弦函数的简图?
    教师活动
    问题1:同学们,上节课我们学习了正弦函数的图像,它的图像是怎样的呢?还记得是用什么方法画出来的吗?
    (与学生一起回顾正弦函数图像的作法,并在黑板上一步一步演示正弦函数的图像,如图1)
    图1
    问题2:我们学了指数函数、对数函数、幂函数和正弦函数等的图像,想不想学余弦函数的图像呢?
    板书课题:余弦函数的图像和五点法
    层层递进,探索新知(预计24分钟)
    1.探究余弦函数的图像(预计10分钟)
    问题3:要画余弦函数的图像,可以类比正弦函数图像的作法,可以想到什么方法呢?
    (余弦线的方法)
    问题4:但是余弦线的方法有点繁琐,有没有比较简便的方法呢?
    问题5:回想诱导公式,正弦和余弦有什么等量关系呢?能不能把它们列出来呢?
    (如:sin x=cs (-x),cs x=sin(-x),sin x=-cs(+x),cs x=sin(+x),
    sin x=-cs(-x),cs x=-sin (-x))
    问题6:最好选用哪一条公式来推出余弦函数的图像呢?为什么?
    (引导学生自己先思考,再与其他同学进行交流和讨论,5分钟后,请同学来分享成果,教
    师作点评。)
    答:最好选用cs x=sin(+x),因为只需要将函数y=sin x,x∈R的图像向左平移个单位长度,
    即可得到余弦函数y=cs x在R上的图像;而运用其他公式,需将y=sin x,x∈R的图像经过
    多次变换,较繁琐,故不采用。
    (图2,在黑板上演示余弦函数的画法)
    引出正弦曲线和余弦曲线的定义(预计2分钟)
    定义:正弦函数的图像和余弦函数的图像分别叫做正弦曲线和余弦曲线。
    五点法(预计12分钟)
    (1)探究用五点法画正弦函数的图像
    问题7:讲新课前,我们复习了正弦函数的图像,有没有留意作图时,我们将单位圆分成12等份,
    得到12个分点,这些点有什么特点呢?
    (都是特殊点)
    问题8:对了,都是特殊点。想一想,不用正弦线的方法,能不能在坐标系上描出几个特殊点,再连线就可以得到正弦函数在[0,]上的大致图像了?
    (可以)
    问题9:那至少需要几个点呢?
    (组织学生讨论、交流,请同学分享成果,教师作点评,并给出正确解答)
    答:在函数y=sin x,x∈[0,2π]的图像上,起关键作用的点有以下五个:(0,0),(,1),
    (,0),(,-1),(,0)。
    探究用五点法画余弦函数的图像
    问题10:类似于正弦函数的五个关键点,你能找出余弦函数的五个关键点吗?请将它们的坐标写出来,然后作出y=cs x在[0,2]上的简图,再作出在R上的图像。
    答:(0,1),(,0),(,-1),(,0),(,1)。
    二、小结
    这堂课的主要内容是什么?
    正弦函数的图像通过怎样的图形变换可以得到余弦函数的图像?
    如何用五点法画正弦函数和余弦函数的图像?
    反思学习过程,对研究正弦函数、余弦函数图像的方法进行概括,深化认识。
    三、当堂检测
    1画出下列函数的简图:
    (1)y = 1+sinx , x∈[0,]
    实线表示y = 1+sinx,x∈[0,]
    虚线表示y=sinx,x∈[0,]

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map