还剩8页未读,
继续阅读
所属成套资源:人教版七年级数学上册同步备课 精品(导学案)
成套系列资料,整套一键下载
人教版七年级数学上册同步备课 《第四章》4.2.2 线段长短的比较与运算(导学案)
展开
这是一份人教版七年级数学上册同步备课 《第四章》4.2.2 线段长短的比较与运算(导学案),共11页。
4.2.2 线段长短的比较与运算 导学案 一、学习目标:1.会用尺规画一条线段等于已知线段,会比较两条线段的长短. 理解线段等分点的意义.2.能够运用线段的和、差、倍、分关系求线段的长度.3.体会文字语言、符号语言和图形语言的相互转化.4.了解两点间距离的意义,理解“两点之间,线段最短”的线段性质,并学会运用. 重点:线段比较大小以及线段的性质.难点:运用线段的和、差、倍、分关系求线段的长度.二、学习过程:自学导航问题:老师手里的纸上有一条线段,你能在你的本上作出一条同样大小的线段来吗?尺规作图在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.动手操作1:作一条线段等于已知线段. 判断线段AB和CD的大小.(1)如图1,线段AB和CD的大小关系是AB___CD;(2)如图2,线段AB和CD的大小关系是AB___CD;(3)如图3,线段AB和CD的大小关系是AB___CD.合作探究如图,线段AB和AC的大小关系是怎样的?线段AC与线段AB的差是哪条线段?你还能从图中观察出其他线段间的和、差关系吗?动手操作2:如图,已知线段a和线段b,怎样通过作图得到a与b的和、a与b的差呢?动手操作3:如图,已知线段a、b,作一条线段,使它等于2a-b.动手操作4:如图,已知线段a,求作线段AB=2a.【归纳】点M把线段AB分成______的两条线段AM和BM;点M叫做线段AB的_______.因此可得:AM=______=________,AB=______=_______.类似地,还有线段的三等分点、四等分点等.AM=_____=_____=________,AB=______=_______=_______.AM=_____=_____=_____=______,AB=_____=______=_____=_____.思考:如图,从A地到B地有四条道路,除它们之外能否再修一条从A地到B地的最短道路?如果能,请联系你以前所学的知识,在图上画出最短路线.【归纳】两点的所有连线中,__________.简单说成:________________________.连接两点间的线段的________,叫做这两点的_______.估计下列图中线段AB与线段AC的大小关系,再用刻度尺或用圆规来检验你的估计.AB___AC AB___AC AB___AC考点解析考点1:线段的作法及长短比较★★★例1.如图,有一张三角形的纸片,你能准确地比较线段AB与线段BC的长短吗?【迁移应用】1.如图,比较线段a和b的长度,结果正确的是( )A.a>b B.a<b C.a=b D.无法确定2.如图,用圆规比较两条线段AB和A'B'的长短,其中正确的是( )A.AB>A'B' B.AB=A'B' C.AB<A'B' D.没有刻度尺,无法确定3.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四点处,则表示他最好成绩的点是( )A.M B.N C.P D.Q4.如图,比较这两组线段的长短.考点2:线段的和、差★★★例2.如图,已知线段a,b,c,其中a>b>c.(1)尺规作图:在射线AP上求作线段AB,使AB=a+c-b;(2)若a=4,b=3,c=2,求AB的长.【迁移应用】1.如图,已知线段a, b,求作线段AB,使得AB=a+2b.小明给出了四个步骤:①在射线AM上截取线段AP=a;②则线段AB=a+2b;③在射线PM上截取PQ=b,QB=b;④画射线AM.你认为正确的顺序是( )A.①②③④ B.④①③② C.④③①② D.④②①③2.如图,下列关系式中与图形不符合的是( )A.AD-CD=AC B.AC-BC=AB C.AB+BD=AD D.AC+BD=AD考点3:线段的中点、等分点★例3.如图,AC=6cm, BC=15cm, M是AC的中点,在CB上取一点N,使得CN=13BC,求MN的长.【迁移应用】1.下列条件中能确定C是线段AB的中点的是( )A.AC=BC B.AB=BC C.AC=BC=12AB D.AC+BC=AB2.如图,C,D是线段AB上的两点,且D是线段AC的中点.若AB=10cm,BC=4 cm,则AD的长为( ) A.2cm B.3cm C.4cm D.6cm3.如图,点C在线段AB的延长线上,且BC=2AB,D是AC的中点,若AB=2cm,求BD的长.4.如图,C,D是线段AB的三等分点,E是线段DB的中点,AB=12cm,求线段CE的长.考点4:关于线段的基本事实及两点的距离★★★例4.如图,小明家在B处,现在小明要去位于D处的同学家.(1)最近的路线是__________;(2)B,D两点的距离是线段______的长度.【迁移应用】1.若AB=4cm,BC=3cm,则A,C两点的距离( )A.1cm B.7cm C.1cm或7cm D.不确定2.小明捡到一片沿直线折断了的银剩下的杏叶(如图),他发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是____________________.3.如图,A,B是公路l两旁的两个村庄,若要在公路上修建一个汽车站Р,使它到A,B两个村庄的距离和最小,试在l上标出汽车站P的位置.考点5:线段的基本事实的应用★★★例5.如图①,一只蚂蚁要沿着正方体表面从点A爬到点B,画出它爬行的最短路径(下底面不可通行).【迁移应用】如图,A,B,C,D为四个居民小区,现要在附近建一个购物中心.应把购物中心建在何处,才能使四个居民小区到购物中心的距离之和最小?请确定购物中心的位置,并说明理由.考点6:线段的有关计算★★★★类型1:直接计算线段的长例6.如图,已知线段AB,延长AB到点C,使BC=12AB,D为AC的中点,DC=3cm,求DB的长.【迁移应用】如图,已知线段AB=3cm,延长线段AB到点C,使BC=2AB,延长线段BA到点D,使AD∶AC=4∶3,M是BD的中点.求线段AM的长.类型2:利用方程思想计算线段的长例7.如图,已知C,D两点将线段AB分为三部分,且AC:CD:DB=2:3:4.若M为AB的中点,N为BD的中点,且MN=5,求AB的长.【迁移应用】1.如图,B和C为线段AD上两点,AB∶BC:CD=3∶1∶6,M是AD的中点.若MC=2,则AD的长为________.2.如图,点C,D在线段AB上,且满足CD=14AD=16BC,E,F分别为线段AC,BD的中点.如果EF=5cm,求线段AB的长度.类型3:利用分类讨论思想计算线段的长例8.在直线l上有四点A,B,C,D,已知AB=24,AC=6,D是BC的中点,求线段AD的长.【迁移应用】1.如图,C为线段AD上的一点,B为CD的中点,且AD=9,CD=4.若点E在直线AD上,且EA=1,则BE的长为( )A.4 B.6或8 C.6 D.82.A、B、C是直线l上的点,线段BC的长为4,M,N分别为线段AB,BC的中点,MN的长为3,则线段AB的长为__________.类型4:利用整体思想计算线段的长例9.如图,点C在线段AB上,M,N分别是AC,BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任意一点,AC+CB=a cm,其他条件不变,求线段MN的长.【迁移应用】如图,D为线段BC的中点,E为线段AC的中点.若ED=9,求线段AB的长度.
4.2.2 线段长短的比较与运算 导学案 一、学习目标:1.会用尺规画一条线段等于已知线段,会比较两条线段的长短. 理解线段等分点的意义.2.能够运用线段的和、差、倍、分关系求线段的长度.3.体会文字语言、符号语言和图形语言的相互转化.4.了解两点间距离的意义,理解“两点之间,线段最短”的线段性质,并学会运用. 重点:线段比较大小以及线段的性质.难点:运用线段的和、差、倍、分关系求线段的长度.二、学习过程:自学导航问题:老师手里的纸上有一条线段,你能在你的本上作出一条同样大小的线段来吗?尺规作图在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.动手操作1:作一条线段等于已知线段. 判断线段AB和CD的大小.(1)如图1,线段AB和CD的大小关系是AB___CD;(2)如图2,线段AB和CD的大小关系是AB___CD;(3)如图3,线段AB和CD的大小关系是AB___CD.合作探究如图,线段AB和AC的大小关系是怎样的?线段AC与线段AB的差是哪条线段?你还能从图中观察出其他线段间的和、差关系吗?动手操作2:如图,已知线段a和线段b,怎样通过作图得到a与b的和、a与b的差呢?动手操作3:如图,已知线段a、b,作一条线段,使它等于2a-b.动手操作4:如图,已知线段a,求作线段AB=2a.【归纳】点M把线段AB分成______的两条线段AM和BM;点M叫做线段AB的_______.因此可得:AM=______=________,AB=______=_______.类似地,还有线段的三等分点、四等分点等.AM=_____=_____=________,AB=______=_______=_______.AM=_____=_____=_____=______,AB=_____=______=_____=_____.思考:如图,从A地到B地有四条道路,除它们之外能否再修一条从A地到B地的最短道路?如果能,请联系你以前所学的知识,在图上画出最短路线.【归纳】两点的所有连线中,__________.简单说成:________________________.连接两点间的线段的________,叫做这两点的_______.估计下列图中线段AB与线段AC的大小关系,再用刻度尺或用圆规来检验你的估计.AB___AC AB___AC AB___AC考点解析考点1:线段的作法及长短比较★★★例1.如图,有一张三角形的纸片,你能准确地比较线段AB与线段BC的长短吗?【迁移应用】1.如图,比较线段a和b的长度,结果正确的是( )A.a>b B.a<b C.a=b D.无法确定2.如图,用圆规比较两条线段AB和A'B'的长短,其中正确的是( )A.AB>A'B' B.AB=A'B' C.AB<A'B' D.没有刻度尺,无法确定3.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四点处,则表示他最好成绩的点是( )A.M B.N C.P D.Q4.如图,比较这两组线段的长短.考点2:线段的和、差★★★例2.如图,已知线段a,b,c,其中a>b>c.(1)尺规作图:在射线AP上求作线段AB,使AB=a+c-b;(2)若a=4,b=3,c=2,求AB的长.【迁移应用】1.如图,已知线段a, b,求作线段AB,使得AB=a+2b.小明给出了四个步骤:①在射线AM上截取线段AP=a;②则线段AB=a+2b;③在射线PM上截取PQ=b,QB=b;④画射线AM.你认为正确的顺序是( )A.①②③④ B.④①③② C.④③①② D.④②①③2.如图,下列关系式中与图形不符合的是( )A.AD-CD=AC B.AC-BC=AB C.AB+BD=AD D.AC+BD=AD考点3:线段的中点、等分点★例3.如图,AC=6cm, BC=15cm, M是AC的中点,在CB上取一点N,使得CN=13BC,求MN的长.【迁移应用】1.下列条件中能确定C是线段AB的中点的是( )A.AC=BC B.AB=BC C.AC=BC=12AB D.AC+BC=AB2.如图,C,D是线段AB上的两点,且D是线段AC的中点.若AB=10cm,BC=4 cm,则AD的长为( ) A.2cm B.3cm C.4cm D.6cm3.如图,点C在线段AB的延长线上,且BC=2AB,D是AC的中点,若AB=2cm,求BD的长.4.如图,C,D是线段AB的三等分点,E是线段DB的中点,AB=12cm,求线段CE的长.考点4:关于线段的基本事实及两点的距离★★★例4.如图,小明家在B处,现在小明要去位于D处的同学家.(1)最近的路线是__________;(2)B,D两点的距离是线段______的长度.【迁移应用】1.若AB=4cm,BC=3cm,则A,C两点的距离( )A.1cm B.7cm C.1cm或7cm D.不确定2.小明捡到一片沿直线折断了的银剩下的杏叶(如图),他发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是____________________.3.如图,A,B是公路l两旁的两个村庄,若要在公路上修建一个汽车站Р,使它到A,B两个村庄的距离和最小,试在l上标出汽车站P的位置.考点5:线段的基本事实的应用★★★例5.如图①,一只蚂蚁要沿着正方体表面从点A爬到点B,画出它爬行的最短路径(下底面不可通行).【迁移应用】如图,A,B,C,D为四个居民小区,现要在附近建一个购物中心.应把购物中心建在何处,才能使四个居民小区到购物中心的距离之和最小?请确定购物中心的位置,并说明理由.考点6:线段的有关计算★★★★类型1:直接计算线段的长例6.如图,已知线段AB,延长AB到点C,使BC=12AB,D为AC的中点,DC=3cm,求DB的长.【迁移应用】如图,已知线段AB=3cm,延长线段AB到点C,使BC=2AB,延长线段BA到点D,使AD∶AC=4∶3,M是BD的中点.求线段AM的长.类型2:利用方程思想计算线段的长例7.如图,已知C,D两点将线段AB分为三部分,且AC:CD:DB=2:3:4.若M为AB的中点,N为BD的中点,且MN=5,求AB的长.【迁移应用】1.如图,B和C为线段AD上两点,AB∶BC:CD=3∶1∶6,M是AD的中点.若MC=2,则AD的长为________.2.如图,点C,D在线段AB上,且满足CD=14AD=16BC,E,F分别为线段AC,BD的中点.如果EF=5cm,求线段AB的长度.类型3:利用分类讨论思想计算线段的长例8.在直线l上有四点A,B,C,D,已知AB=24,AC=6,D是BC的中点,求线段AD的长.【迁移应用】1.如图,C为线段AD上的一点,B为CD的中点,且AD=9,CD=4.若点E在直线AD上,且EA=1,则BE的长为( )A.4 B.6或8 C.6 D.82.A、B、C是直线l上的点,线段BC的长为4,M,N分别为线段AB,BC的中点,MN的长为3,则线段AB的长为__________.类型4:利用整体思想计算线段的长例9.如图,点C在线段AB上,M,N分别是AC,BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任意一点,AC+CB=a cm,其他条件不变,求线段MN的长.【迁移应用】如图,D为线段BC的中点,E为线段AC的中点.若ED=9,求线段AB的长度.
相关资料
更多