所属成套资源:2024届高考数学-二轮复习(考法分类)(新高考使用)
- 考点08 切线(选填题12种考法)专练-2024届高三数学二轮复习《考法分类》专题训练(新高考).zip 试卷 0 次下载
- 考点09 数列 (选填题8种考法)讲义-2024届高三数学二轮复习《考法分类》专题训练(新高考).zip 试卷 0 次下载
- 专题10 三角函数的性质(选填题10种考法)讲义-2024届高三数学二轮复习《考法分类》专题训练(新高考) 试卷 0 次下载
- 专题10 三角函数的性质(选填题10种考法)专练-2024届高三数学二轮复习《考法分类》专题训练(新高考) 试卷 0 次下载
- 专题11 计数原理(选填题10种考法)讲义-2024届高三数学二轮复习《考法分类》专题训练(新高考).zip 试卷 0 次下载
考点09 数列 (选填题8种考法)专练-2024届高三数学二轮复习《考法分类》专题训练(新高考).zip
展开
这是一份考点09 数列 (选填题8种考法)专练-2024届高三数学二轮复习《考法分类》专题训练(新高考).zip,文件包含考点09数列选填题8种考法专练原卷版docx、考点09数列选填题8种考法专练解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
1.(2023·天津·统考高考真题)已知为等比数列,为数列的前项和,,则的值为( )
A.3B.18C.54D.152
【答案】C
【解析】由题意可得:当时,,即, ①
当时,,即, ②
联立①②可得,则.
故选:C.
2.(2023·江西九江·统考一模)已知等差数列的前项和为,若,,则( )
A.B.C.D.
【答案】C
【解析】由题意得,解得,,故选:C.
3.(2023·四川南充·模拟预测)等差数列的前项和为,则的最大值为( )
A.60B.50C.D.30
【答案】D
【解析】由和,
由于为等差数列,且,所以当时,,
故的最大值为,
故选:D
4.(2023·河南开封·校考模拟预测)已知为等比数列,是它的前项和.若,且与的等差中项为,则等于( )
A.37B.35C.31D.29
【答案】C
【解析】,,解得,
与的等差中项为,解得,
设等比数列的公比为,则,解得,
,,故选:C.
5.(2023·湖南郴州·统考一模)设数列满足且是前项和,且,则( )
A.2024B.2023C.1012D.1011
【答案】C
【解析】由题意,,,
则数列为等差数列,设公差为,,即,则,则,
则所以,(常数),则也为等差数列.
则数列的公差为.
所以
所以.
故选:C
6.(2023·河北唐山·开滦第二中学校考模拟预测)已知等差数列()的前n项和为,公差,,则使得的最大整数n为( )
A.9B.10C.17D.18
【答案】C
【解析】因为,所以异号,
因为,所以,
又有,所以,即,
因为,,
所以的最大整数n为17.
故选:C
7.(2023·吉林·统考一模)在等比数列中,,,则( )
A.B.C.D.11
【答案】A
【解析】设,
则
,
所以.
故选:A
8.(2022·全国·统考高考真题)已知等比数列的前3项和为168,,则( )
A.14B.12C.6D.3
【答案】D
【解析】设等比数列的公比为,
若,则,与题意矛盾,
所以,
则,解得,
所以.
故选:D.
9.(2023·陕西咸阳·统考三模)已知等差数列,的前n项和分别为,,若,则( )
A.B.C.D.
【答案】A
【解析】由,得 ,
故 .
故选:A.
10.(2023·江西景德镇·统考三模)在数列中,,,则数列的前项和( )
A.B.C.D.
【答案】D
【解析】,
,
.
故选:D.
11.(2023·海南海口·校考模拟预测)在中,角、、所对的边长分别为,若成等比数列,则角的取值范围为( )
A.B.C.D.
【答案】B
【解析】因为成等比数列,可得,
则,(当且仅当时取等号),
由于在三角形中,且在上为减函数,
所以角的取值范围是:.
故选:B.
12.(2023·海南省直辖县级单位·文昌中学校考模拟预测)已知正项等比数列,若,则( )
A.16B.32C.48D.64
【答案】B
【解析】根据等比中项,,
又是正项数列,故(负值舍去)
设等比数列的公比为,由,
即,解得(正项等比数列公比不可是负数,负值舍去),
故
故选:B
13.(2023·云南昆明·昆明一中校考模拟预测)已知正项等比数列的前项和为,若,则的最小值为( )
A.8B.C.D.10
【答案】B
【解析】由正项等比数列可知,,成等比数列,
则,又,所以,
所以,当且仅当,即时取等号,
故的最小值为.
故选:B.
14.(2023·福建泉州·统考模拟预测)记等比数列的前项和为.若,,则( )
A.B.C.D.
【答案】C
【解析】设等比数列的公比为(),
则,解得:,
又,
所以,
故选:C.
15.(2023·宁夏银川·校考模拟预测)设等比数列中,前n项和为,已知,,则等于( )
A.B.
C.D.
【答案】A
【解析】因为,且也成等比数列,
因为,,所以,
所以8,-1,S9-S6成等比数列,所以8(S9-S6)=1,
即,所以.故B,C,D错误.
故选:A.
16.(2023·陕西渭南·统考模拟预测)已知等差数列的公差为,集合,若,则( )
A.B.C.0D.
【答案】B
【解析】因为等差数列的公差为,
所以,
所以,
所以数列是周期为3的数列,
又,所以或或,
则符合题意,此时,
所以,
所以,排除,只有符合,
故选:.
17.(2023·全国·统考高考真题)已知等差数列的公差为,集合,若,则( )
A.-1B.C.0D.
【答案】B
【解析】依题意,等差数列中,,
显然函数的周期为3,而,即最多3个不同取值,又,
则在中,或,
于是有,即有,解得,
所以,.
故选:B
18.(2023·全国·统考高考真题)记为数列的前项和,设甲:为等差数列;乙:为等差数列,则( )
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
【答案】C
【解析】方法1,甲:为等差数列,设其首项为,公差为,
则,
因此为等差数列,则甲是乙的充分条件;
反之,乙:为等差数列,即为常数,设为,
即,则,有,
两式相减得:,即,对也成立,
因此为等差数列,则甲是乙的必要条件,
所以甲是乙的充要条件,C正确.
方法2,甲:为等差数列,设数列的首项,公差为,即,
则,因此为等差数列,即甲是乙的充分条件;
反之,乙:为等差数列,即,
即,,
当时,上两式相减得:,当时,上式成立,
于是,又为常数,
因此为等差数列,则甲是乙的必要条件,
所以甲是乙的充要条件.
故选:C
19.(2022·浙江·统考高考真题)已知数列满足,则( )
A.B.C.D.
【答案】B
【解析】∵,易得,依次类推可得
由题意,,即,
∴,
即,,,…,,
累加可得,即,
∴,即,,
又,
∴,,,…,,
累加可得,
∴,
即,∴,即;
综上:.
故选:B.
20.(2022·全国·统考高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列:,,,…,依此类推,其中.则( )
A.B.C.D.
【答案】D
【解析】[方法一]:常规解法
因为,
所以,,得到,
同理,可得,
又因为,
故,;
以此类推,可得,,故A错误;
,故B错误;
,得,故C错误;
,得,故D正确.
[方法二]:特值法
不妨设则
故D正确.
21.(2023·四川成都·成都七中校考模拟预测)某人从2023年起,每年1月1日到银行新存入2万元(一年定期),若年利率为2%保持不变,且每年到期存款均自动转为新的一年定期,到2033年1月1日将之前所有存款及利息全部取回,他可取回的线数约为( )(单位:万元)
参考数据:
A.2.438B.19.9C.22.3D.24.3
【答案】C
【解析】由题意,2023年存的2万元共存了10年,本息和为万元,
2024年存的2万元共存了9年,本息和为万元,
2032年存的2万元共存了1年,本息和为万元,
所以到2033年1月1日将之前所有存款及利息全部取回,
他可取回的钱数约为万元,
故选:C.
22.(2023·湖南岳阳·统考一模)核电站只需消耗很少的核燃料,就可以产生大量的电能,每千瓦时电能的成本比火电站要低20%以上.核电无污染,几乎是零排放,对于环境压力较大的中国来说,符合能源产业的发展方向,2021年10月26日,国务院发布《2030年前碳达峰行动方案》,提出要积极安全有序发展核电.但核电造福人类时,核电站的核泄漏核污染也时时威胁着人类,如2011年,日本大地震导致福岛第一核电站发生爆炸,核泄漏导致事故所在地被严重污染,主要的核污染物是锶90,它每年的衰减率为2.47%.专家估计,要基本消除这次核事故对自然环境的影响至少需要800年,到那时,原有的锶90大约剩( )(参考数据)
A.B.C.D.
【答案】B
【解析】由题意,设一开始锶90质量为1,
则每年的剩余量构成以为公比的等比数列,
则经过800年锶90剩余质量为,
两边取常用对数可得:,
所以,
故选:B
23.(2023·广东东莞·校联考模拟预测)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金为持金的,第2关收税金为剩余金的,第3关收税金为剩余金的,第4关收税金为剩余金的,第5关收税金为剩余金的,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为斤,设,则( )
A.B.7C.13D.26
【答案】C
【解析】由题意知:这个人原来持金为斤,
第1关收税金为:斤;第2关收税金为斤;
第3关收税金为斤,
以此类推可得的,第4关收税金为斤,第5关收税金为斤,
所以,
即,解得,
又由,所以.
故选:C.
24.(2022·北京·统考高考真题)设是公差不为0的无穷等差数列,则“为递增数列”是“存在正整数,当时,”的( )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【答案】C
【解析】设等差数列的公差为,则,记为不超过的最大整数.
若为单调递增数列,则,
若,则当时,;若,则,
由可得,取,则当时,,
所以,“是递增数列”“存在正整数,当时,”;
若存在正整数,当时,,取且,,
假设,令可得,且,
当时,,与题设矛盾,假设不成立,则,即数列是递增数列.
所以,“是递增数列”“存在正整数,当时,”.
所以,“是递增数列”是“存在正整数,当时,”的充分必要条件.
故选:C.
25.(2023·江苏·统考模拟预测)已知函数,,若方程有三个不同的实数根,且三个根从小到大依次成等比数列,则实数的值可能是( )
A.B.C.D.
【答案】A
【解析】
如图,设方程的三个不同的实数根从小到大依次为,,
则,解得,
所以.
故选:A.
26.(2023·浙江·校联考模拟预测)已知数列的前n项和为.若数列是等比数列;,则是的( )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
【答案】A
【解析】若是等比数列,设公比为k,则,
,
于是,
即成立;
若,
取,显然不是等比数列,故是的充分不必要条件.
答案:A
27.(2023·新疆·统考三模)已知数列中,,若(),则下列结论中错误的是( )
A.B.
C.()D.
【答案】D
【解析】对于A项,由()得,
所以,,
又因为,所以,
所以,故A项正确;
对于B项,由A项可知,,故B项正确;
对于C项,因为,所以,
假设当,,成立,则,
令,则,
当,,单调递减,
所以,即,
所以,
所以有,
所以对于任意,,成立,故C项正确;
对于D项,由A项知,不满足,故D项错误.
故选:D.
28.(2023·陕西咸阳·武功县普集高级中学校考模拟预测)养过蜂的人都知道,蜂后产的卵若能受精则孵化为雌蜂,若不能受精则孵化为雄蜂,即雄蜂是有母无父,雌蜂是有父有母的,因此一只雄蜂的第代祖先数目如下图所示:
若用表示一只雄蜂第代祖先的个数,给出下列结论,其中正确的是( )
A.B.
C.D.
【答案】B
【解析】由题意得,当时,,
A选项,,A错误;
B选项,,B正确;
C选项,,
故,C错误;
D选项,
,
故,D错误.
故选:B
二、多选题
29.(2023·湖南·校联考模拟预测)若正项数列是等差数列,且,则( )
A.当时,B.的取值范围是
C.当为整数时,的最大值为29D.公差d的取值范围是
【答案】ABC
【解析】当时,公差,,A正确.
因为是正项等差数列,所以,即,且,
所以公差的取值范围是,D错误.
因为,所以的取值范围是,B正确.
,当为整数时,的最大值为29,C正确.
故选:
30.(2023·安徽蚌埠·统考三模)已知等差数列的前项和为,等比数列的前项积为,则下列结论正确的是( )
A.数列是等差数列B.数列是等差数列
C.数列是等比数列D.数列是等差数列
【答案】ABC
【解析】设等差数列的公差为,则,∴.
对于A选项,,∴为等差数列,A正确;
对于B选项,令,
∴,
故数列是等差数列,B正确;
设等比数列的公比为,
对于C选项,令,则,故数列是等比数列,C正确;
对于D选项,∵不一定为常数,故数列不一定是等差数列,故D错误;
故选:ABC.
31.(2023·全国·模拟预测)已知数列的前项和为,若,,则下列说法正确的是( )
A.是递增数列B.是数列中的项
C.数列中的最小项为D.数列是等差数列
【答案】ACD
【解析】由已知,,所以,数列是首项为,公差为的等差数列,
所以,.
对于A选项,因为,所以,是递增数列,A对;
对于B选项,令,可得,B错;
对于C选项,令可得,所以,数列中的最小项为,C对;
对于D选项,,则,
所以,,
故数列为等差数列,D对.
故选:ACD.
32.(2023·湖南长沙·周南中学校考三模)已知数列的前n项和是,则下列说法正确的是( )
A.若,则是等差数列
B.若,,则是等比数列
C.若是等差数列,则,,成等差数列
D.若是等比数列,则,,成等比数列
【答案】ABC
【解析】对于A,,时,,解得,因此,,是等差数列,A正确;
对于B,,,则,而,是等比数列,B正确;
对于C,设等差数列的公差为,首项是,
,
,
因此,则 ,成等差数列,C正确;
对于D,若等比数列的公比,则 不成等比数列,D错误.
故选:ABC
33.(2023·湖北省直辖县级单位·统考模拟预测)在平面直角坐标系中,,B为坐标原点,点P在圆上,若对于,存在数列,,使得,则下列说法正确的是( )
A.为公差为2的等差数列B.为公比为的等比数列
C.D.前n项和
【答案】CD
【解析】对AB,由点P在圆上,则由参数方程得,
则,∴.
对于,存在数列,,使得,即①,②,
②①得,
令,则,则是以为首项,
公比为的等比数列.
则,AB错;
对C,,C对;
对D,,
,
两式相减得,
.
∴,D对.
故选:CD.
34(2023·全国·模拟预测)已知数列满足为的前项和.则下列说法正确的是( )
A.取最大值时,B.当取最小值时,
C.当取最大值时,D.的最大值为
【答案】AD
【解析】由题意知,则,因为,
所以,
令,所以,所以,所以,
即或,又,故.
当取最大值时,,此时,则,,
故,故A正确;
当取最小值时,,此时,则,,
故,故B不正确;
由,知,
即,当且仅当时取等号,
故当取最大值时,,
此时,故C不正确,D正确.
故选:AD
35.(2023·江苏镇江·江苏省镇江第一中学校考模拟预测)已知等差数列的前项和为,若,,则( )
A.
B.若,则的最小值为
C.取最小值时
D.设,则
【答案】AC
【解析】对于选项A:设等差数列的公差为,
由题意可得:,解得,
所以,故A正确;
对于选项B:若,则,即,
可得,
当且仅当,即时,等号成立,
但,所以的最小值不为,故B错误;
对于选项C:令,解得,
又因为,可得的最后一个负项为第5项,且无零项,
所以取最小值时,故C正确;
对于选项D:因为,
则,
可得,
两式相减得:
,
所以,故D错误;
故选:AC.
36.(2023·重庆·校联考三模)已知数列 满足,,的前项和为,则( )
A.B.
C.D.
【答案】AB
【解析】由,,得,而,
因此数列是首项为,公比为2的等比数列,,
所以,B正确;
由,A正确;
,
则有2,
两式相减得,D错误;
由,C错误.
故选:AB
37.(2023·河南信阳·信阳高中校考模拟预测)若数列满足(为正整数),为数列的前项和则( )
A.B.
C.D.
【答案】ABD
【解析】,故A正确;
由知,,
两式相减得,
故,故当时,为常数列,
故,故,故,故B正确;
,故C错误;
,
故,故D正确.
故选:ABD.
38.(2023·江苏扬州·仪征中学校考模拟预测)已知数列满足,则下列说法正确的是( )
A.B.
C.的最小值为D.
【答案】ABD
【解析】对于选项A:因为,即,
所以数列为递增数列,可得,故A正确;
对于选项B:因为,则,
两边平方整理得,故B正确;
对于选项C:因为数列为递增数列且,则为递减数列,
所以为递减数列,不存在最小值,故C错误;
对于选项D:因为,整理得,
两边平方得,即,
可得,
所以,
即,所以,故D正确;
故选:ABD.
三、填空题
39.(2023·全国·统考高考真题)记为等比数列的前项和.若,则的公比为 .
【答案】
【解析】若,
则由得,则,不合题意.
所以.
当时,因为,
所以,
即,即,即,
解得.
故答案为:
40.(2023·全国·统考高考真题)已知为等比数列,,,则 .
【答案】
【解析】设的公比为,则,显然,
则,即,则,因为,则,
则,则,则,
故答案为:.
41(2022·全国·统考高考真题)记为等差数列的前n项和.若,则公差 .
【答案】2
【解析】由可得,化简得,
即,解得.
故答案为:2.
42.(2022·北京·统考高考真题)已知数列各项均为正数,其前n项和满足.给出下列四个结论:
①的第2项小于3; ②为等比数列;
③为递减数列; ④中存在小于的项.
其中所有正确结论的序号是 .
【答案】①③④
【解析】由题意可知,,,
当时,,可得;
当时,由可得,两式作差可得,
所以,,则,整理可得,
因为,解得,①对;
假设数列为等比数列,设其公比为,则,即,
所以,,可得,解得,不合乎题意,
故数列不是等比数列,②错;
当时,,可得,所以,数列为递减数列,③对;
假设对任意的,,则,
所以,,与假设矛盾,假设不成立,④对.
故答案为:①③④.
43.(2023·江苏南京·南京市第一中学校考模拟预测)设数列的通项公式为,其前项和为,则 .
【答案】100
【解析】当或,时,,;
当,时,,,
当,时.
∴,
∴.
故答案为:100.
44.(2023·上海嘉定·上海市嘉定区第一中学校考三模)已知,,将数列与数列的公共项从小到大排列得到新数列,则 .
【答案】
【解析】因为数列是正奇数列,
对于数列,当为奇数时,设,则为偶数;
当为偶数时,设,则为奇数,
所以,则,
所以.
故答案为:.
45.(2023·江苏·统考模拟预测)若数列满足,,则的前n项和为 .
【答案】
【解析】设的前n项和为,则,
又,
故
,
故,
故答案为:.
46.(2023·新疆乌鲁木齐·统考三模)已知各项均不为零的数列的前项和为,,,,且,则的最大值等于 .
【答案】
【解析】因为,
所以,将代入,得,
所以,,所以,
,
又因为,所以,,即,
因为,所以,,
当且仅当时等号成立,
所以,
因为,所以当时,
最大,
所以,
即时,有最大值.
故答案为:.
47.(2023·陕西渭南·统考二模)已知数列中,,前n项和为.若,则数列的前2023项和为 .
【答案】
【解析】在数列中,又,且,
两式相除得,,
∴数列 是以1为首项,公差为1的等差数列,则,∴ ,
当,,
当时,,也满足上式,
∴数列的通项公式为,
则,
数列的前2023项和为.
故答案为:
48.(2023·贵州·统考模拟预测)已知数列满足,若数列的前项和为,,则中所有元素的和为 .
【答案】2520
【解析】由,得,
所以,
所以为奇数时,故都是集合中的元素.
又,所以为偶数时,
由得,所以2,4,6,8是集合中的元素,
则集合中所有元素的和为.
故答案为:2520.
49.(2023·陕西·校联考三模)已知数列的前n项和,设为数列的前n项和,若对任意的,不等式恒成立,则实数的取值范围为 .
【答案】
【解析】当时,,
当时,满足上式,
所以.
所以,
所以,
由,可得,即,
因为函数在单调递增,
所以当时,有最小值为10,
所以,所以,
所以实数的取值范围为.
故答案为:.
50.(2023·陕西铜川·校考一模)已知数列中,,且,数列的前n项和为,若对任意的正整数n,总有,则t的取值范围是 .
【答案】.
【解析】由得,
所以数列是以2为首项,2为公差的等差数列,所以,即.
所以.
故
,
易知数列为递增函数,且,所以,
故,解得或.
故答案为:.
相关试卷
这是一份专题12 统计概率(选填题10种考法)专练-2024届高三数学二轮复习《考法分类》专题训练(新高考).zip,文件包含专题12统计概率选填题10种考法专练原卷版docx、专题12统计概率选填题10种考法专练解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
这是一份专题11 计数原理(选填题10种考法)专练-2024届高三数学二轮复习《考法分类》专题训练(新高考).zip,文件包含专题11计数原理选填题10种考法专练原卷版docx、专题11计数原理选填题10种考法专练解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份专题01 集合与逻辑用语(选填题8种考法) 专练-2024届高三数学二轮复习《考法分类》专题训练(新高考).zip,文件包含专题01集合与逻辑用语专练选填题8种考法原卷版docx、专题01集合与逻辑用语专练选填题8种考法解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。