2023-2024学年北京市景山学校数学八上期末综合测试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如图,在Rt△ABC中,∠ACB=90°,若△ACD的周长为50,DE为AB的垂直平分线,则AC+BC=( )
A.25cmB.45cmC.50cmD.55cm
2.已知直线y=2x经过点(1,a),则a的值为( )
A.a=2B.a=-1C.a=-2D.a=1
3.如图,在四边形中,点是边上的动点,点是边上的定点,连接,分别是的中点,连接.点在由到运动过程中,线段的长度( )
A.保持不变B.逐渐变小C.先变大,再变小D.逐渐变大
4.下列计算正确的是( )
A.B.C.D.·
5.已知函数是正比例函数,且图像在第二、四象限内,则的值是( )
A.2B.C.4D.
6.若分式有意义,则的取值范围为( )
A.B.C.D.
7.因式分解x﹣4x3的最后结果是( )
A.x(1﹣2x)2B.x(2x﹣1)(2x+1)C.x(1﹣2x)(2x+1)D.x(1﹣4x2)
8.下列运算一定正确的是( )
A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m2
9.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是
A.射线OE是∠AOB的平分线
B.△COD是等腰三角形
C.C、D两点关于OE所在直线对称
D.O、E两点关于CD所在直线对称
10.如图是边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:)不正确的( )
A.B.
C.D.
二、填空题(每小题3分,共24分)
11.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156,数字0.00000156用科学记数法表示为 ________________.
12.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A = 70°时,则∠BPC的度数为________.
13.规定一种新的运算:A★B=A×B-A÷B,如4★2=4×2-4÷2=6,则6★(-2)的值为______.
14.如图,∠2=∠3=65°,要使直线a∥b,则∠1=_____度.
15.已知m=2n+1,则m2﹣4mn+4n2﹣5的值为____.
16.在平行四边形中,,,,那么的取值范围是______.
17.命题“全等三角形的面积相等”的逆命题是__________
18.华为的麒麟990芯片采用7nm(1nm=0.000000001m)工艺,用指甲盖的大小集成了多达103亿个晶体管. 其中7nm可用科学记数法表示为_____________米.
三、解答题(共66分)
19.(10分)已知:如图,在中,,BE、CD是中线求证:.
20.(6分)综合与实践
(1)问题发现
如图1,和均为等边三角形,点在同一直线上,连接.请写出的度数及线段之间的数量关系,并说明理由.
(2)类比探究
如图2,和均为等腰直角三角形,,点在同一直线上,为中边上的高,连接.
填空:①的度数为____________;
②线段之间的数量关系为_______________________________.
(3)拓展延伸
在(2)的条件下,若,则四边形的面积为______________.
21.(6分)如图,在方格纸上有三点A、B、C,请你在格点上找一个点D,作出以A、B、C、D为顶点的四边形并满足下列条件.
(1)使得图甲中的四边形是轴对称图形而不是中心对称图形.
(2)使得图乙中的四边形不是轴对称图形而是中心对称图形.
(3)使得图丙中的四边形既是轴对称图形又是中心对称图形.
22.(8分)如图1,已知,,且,.
(1)求证:;
(2)如图2,若,,折叠纸片,使点与点重合,折痕为,且.
①求证:;
②点是线段上一点,连接,一动点从点出发,沿线段以每秒1个单位的速度运动到点,再沿线段以每秒个单位的速度运动到后停止,点在整个运动过程中用时最少多少秒?
23.(8分)国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:
A组:;B组:;C组:;D组:.
请根据上述信息解答下列问题:
(1)本次调查数据的中位数落在______组内,众数落在______组内;
(2)若A组取,B组取,C组取,D组取,计算这300名学生平均每天在校体育活动的时间;(保留两位小数)
(3)若该辖区约有20000名中学生,请你估计其中达到国家体育活动时间的人数.
24.(8分)已知,在中,,点为的中点.
(1)观察猜想:如图①,若点、分别为、上的点,且于点,则线段与的数量关系是_______;(不说明理由)
(2)类比探究:若点、分别为、延长线上的点,且于点,请写出与的数量关系,在图②中画出符合题意的图形,并说明理由;
(3)解决问题:如图③,点在的延长线上,点在上,且,若,求的长.(直接写出结果,不说明理由.)
25.(10分)在Rt△ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD于E,BF∥AC交CE的延长线于F.
(1)求证:△ACD≌△CBF;
(2)求证:AB垂直平分DF.
26.(10分)某中学为调查本校学生周末平均每天做作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分。请根据以上信息,解答下列问题:
(1)求出每天作业用时是4小时的人数,并补全统计图;
(2)这次调查的数据中,做作业所用时间的众数是 ,中位数是 ,平均数是 ;
(3)若该校共有1500名学生,根据以上调查结果估计该校全体学生每天做作业时间在3小时内(含3小时)的同学共有多少人?
参考答案
一、选择题(每小题3分,共30分)
1、C
2、A
3、A
4、D
5、C
6、D
7、C
8、B
9、D
10、A
二、填空题(每小题3分,共24分)
11、
12、125°
13、-9
14、1
15、﹣1
16、217、如果两个三角形的面积相等,那么是全等三角形
18、7×10-9
三、解答题(共66分)
19、见解析
20、(1),证明详见解析;(2)①;②;(3)35
21、见解析
22、(1)见详解;(2)①见详解;②.
23、(1)C;C;(2)1.17小时;(3)12000人.
24、(1)BE=AF;(2)BE=AF,理由见解析;(3).
25、见解析
26、(1)8;统计图见解析;(2)3小时,3小时,3小时;(3)估计该校全体学生每天做作业时间在3小时内(含3小时)的同学共有1020人.
北京市景山学校2023-2024学年数学九上期末达标检测模拟试题含答案: 这是一份北京市景山学校2023-2024学年数学九上期末达标检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2023-2024学年北京市石景山区景山学校八上数学期末达标检测模拟试题含答案: 这是一份2023-2024学年北京市石景山区景山学校八上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了下列各组条件中能判定的是等内容,欢迎下载使用。
2023-2024学年北京市北京市十一学校数学八上期末检测试题含答案: 这是一份2023-2024学年北京市北京市十一学校数学八上期末检测试题含答案,共7页。试卷主要包含了已知,则a+b+c的值是,下列说法错误的是,为推进垃圾分类,推动绿色发展等内容,欢迎下载使用。