所属成套资源:2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用)
- 专题05 三角形中的导角模型-双角平分线(三角形)模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用) 试卷 1 次下载
- 专题06 三角形中的导角模型-平行线+拐点模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用) 试卷 2 次下载
- 专题08 三角形中的重要模型-平分平行(平分射影)构等腰、角平分线第二定理模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用) 试卷 2 次下载
- 专题09 三角形中的重要模型-弦图模型、勾股树模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用) 试卷 1 次下载
- 专题10 三角形中的重要模型-垂美四边形与378、578模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用) 试卷 1 次下载
专题07 三角形中的重要模型-等积模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用)
展开
这是一份专题07 三角形中的重要模型-等积模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用),文件包含专题07三角形中的重要模型-等积模型原卷版docx、专题07三角形中的重要模型-等积模型解析版docx等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。
高效的课堂教学模式是保证高效的复习效果的前提,学生在教师的指导和辅导下进行先自学、探究和及时训练,获得知识、发展能力的一种教学模式。
策略二 专题内容的设计应遵循教与学的认知规律和学生心理发展规律,凸显方法规律,由简单到复杂,由特殊到一般,再由一般到特殊
总结规律,推广一般。从一般到特殊:抛砖引玉,解决问题。
策略三 设计专题内容时考虑建立几何模型,体现思想方法,让学生驾轻就熟,化难为易,化繁为简。
几何,常常因为图形变化多端,方法多种多样而被称为数学中的变形金刚。题目千变万化,但万变不离其宗。
专题07 三角形中的重要模型-等积模型
三角形的面积问题在中考数学几何模块中占据着重要地位,等积变形是中学几何里面一个非常重要的思想,下面的五大模型也都是依托等积变形思想变化而成的,也是学生必须掌握的一块内容。本专题就三角形中的等积模型(蝴蝶(风筝)模型,燕尾模型,鸟头模型,沙漏模型,金字塔模型)进行梳理及对应试题分析,方便掌握。
模型1. 等积变换基础模型
1)等底等高的两个三角形面积相等;
如图1,当//,则; 反之,如果,则可知直线//。
图1 图2 图3
2)两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。
如图2,当点D是BC边上的动点时,则S△ABD∶S△ADC=BD∶DC。
如图3,当点D是BC边上的动点,BE⊥AD,CF⊥AD时,则S△ABD∶S△ADC=BE∶CF。
例1.(山东省临沂市2023-2024学年八年级月考)如图,是边的中线,点E在上,,的面积是3,则的面积是( )
A.4B.3C.2D.1
例2.(河北省石家庄市2023-2024学年八年级月考)如图,是的边上的中线,是的边上的中线,是的边上的中线,若的面积是32,则阴影部分的面积是( )
A.9B.12C.18D.20
例3.(湖北十堰五校联考2023-2024学年八年级月考)如图,点为的重心,,,分别为,,的中点,具有性质:.已知的面积为2,则的面积为 .
例4.(浙江省杭州市2023-2024学年八年级上学期10月月考数学试题)如图,是的一条中线,E为边上一点且,相交于F,四边形的面积为6,则的面积是 .
例5.(2023春·江西萍乡·八年级统考期中)基本性质:三角形中线等分三角形的面积.
如图1,是边上的中线,则.
理由:因为是边上的中线,所以.
又因为,,所以.
所以三角形中线等分三角形的面积.
基本应用:在如图2至图4中,的面积为a.
(1)如图2,延长的边到点D,使,连接.若的面积为,则 (用含a的代数式表示);
(2)如图3,延长的边到点D,延长边到点E,使,,连接.若的面积为,则 (用含a的代数式表示);
(3)在图3的基础上延长到点F,使,连接,,得到(如图4).若阴影部分的面积为,则 (用含a的代数式表示);
拓展应用:
(4)如图5,点D是的边上任意一点,点E,F分别是线段,的中点,且的面积为,则的面积为 (用含a的代数式表示),并写出理由.
例6.(2023春·上海·九年级期中)解答下列各题
(1)如图1,已知直线,点、在直线上,点、在直线上,当点在直线上移动时,总有______与的面积相等.
(2)解答下题.①如图2,在中,已知,且边上的高为5,若过作,连接、,则的面积为______.
②如图3,、、三点在同一直线上, ,垂足为.若,,,,求的面积.
(3)如图4,在四边形中,与不平行,,且,过点画一条直线平分四边形的面积(简单说明理由).
模型2.蝴蝶(风筝)模型
蝴蝶模型(定理)提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
蝴蝶定理:任意四边形中的比例关系
如图1,结论:①或;②。
梯形蝴蝶定理:梯形中比例关系
如图2,结论:①;②;③梯形的对应份数为。
例1.在四边形ABCD中,AC和BD互相垂直并相交于O点,四个小三角形的面积如图所示.则阴影部分三角形BCO的面积为 .
例2、如图,S△ACB=24平方厘米,S△ACD=16平方厘米,S△ABD=25平方厘米,则S△COB为 平方厘米。
例3、如下图,梯形的平行于,对角线,交于,已知与的面积分别为 平方厘米与平方厘米,那么梯形的面积是________平方厘米.
例4、如图,梯形中,、的面积分别为和,则梯形的面积为 .
例5、梯形ABCD中,对角线AC,BD交于点O,AB垂直AC,并且已知AO=6厘米,BO=10厘米,则三角形DOC的面积是 平方厘米。
例6、图中大平行四边形被分成若干小块,其中四块的面积已经标出,则中间的四边形GQHS的面积为 。
模型3.燕尾(定理)模型
条件:如图,在中,E分别是上的点,在上一点,结论:S1S2S3S4S1+S3S2+S4BEEC。
例1、如图,△ABC中,M、N分别是BC、AC边上的三等分点,AM、BN相交于点O,已知△BOM的面积为2,则四边形MCNO的面积为 。
例2.(2023·山东·八年级专题练习)如图,在△ABC中,已知点P、Q分别在边AC、BC上,BP与AQ相交于点O,若△BOQ、△ABO、△APO的面积分别为1、2、3,则△PQC的面积为( )
A.22B.22.5C.23D.23.5
例3.如下图,三角形中,,且三角形的面积是,则三角形的面积为 .
例4.(2023江苏淮安九年级月考)已知的面积是60,请完成下列问题:
(1)如图1,若是的边上的中线,则的面积______的面积.(填“>”“
相关试卷
这是一份专题16 全等与相似模型-半角模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用),文件包含专题16全等与相似模型-半角模型原卷版docx、专题16全等与相似模型-半角模型解析版docx等2份试卷配套教学资源,其中试卷共76页, 欢迎下载使用。
这是一份专题12 全等模型-角平分线模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用),文件包含专题12全等模型-角平分线模型原卷版docx、专题12全等模型-角平分线模型解析版docx等2份试卷配套教学资源,其中试卷共62页, 欢迎下载使用。
这是一份专题09 三角形中的重要模型-弦图模型、勾股树模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用),文件包含专题09三角形中的重要模型-弦图模型勾股树模型原卷版docx、专题09三角形中的重要模型-弦图模型勾股树模型解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。