搜索
    上传资料 赚现金
    英语朗读宝

    江西省真题重组卷03-冲刺2024年高考数学真题重组卷(新七省专用)(Word版附解析)

    江西省真题重组卷03-冲刺2024年高考数学真题重组卷(新七省专用)(Word版附解析)第1页
    江西省真题重组卷03-冲刺2024年高考数学真题重组卷(新七省专用)(Word版附解析)第2页
    江西省真题重组卷03-冲刺2024年高考数学真题重组卷(新七省专用)(Word版附解析)第3页
    还剩14页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江西省真题重组卷03-冲刺2024年高考数学真题重组卷(新七省专用)(Word版附解析)

    展开

    这是一份江西省真题重组卷03-冲刺2024年高考数学真题重组卷(新七省专用)(Word版附解析),共17页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
    (考试时间:120分钟 试卷满分:150分)
    第I卷(选择题)
    一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
    1.(2023新课标全国Ⅰ卷)已知,则( )
    A.B.C.0D.1
    【答案】A
    【详解】因为,所以,即.故选:A.
    2.(2023全国乙卷数学(理))设集合,集合,,则( )
    A.B.
    C.D.
    【答案】A
    【详解】由题意可得,则,选项A正确;
    ,则,选项B错误;
    ,则或,选项C错误;
    或,则或,选项D错误;故选:A.
    3.(2023新课标全国Ⅱ卷)已知为锐角,,则( ).
    A.B.C.D.
    【答案】D
    【详解】因为,而为锐角,
    解得:.故选:D.
    4.(2023•乙卷(文))正方形的边长是2,是的中点,则
    A.B.3C.D.5
    【答案】
    【解析】正方形的边长是2,是的中点,
    所以,,,,
    则.
    故选:.
    5.(2023•新高考Ⅰ)设函数在区间单调递减,则的取值范围是
    A.,B.,C.,D.,
    【答案】
    【解析】设,对称轴为,抛物线开口向上,
    是的增函数,要使在区间单调递减,
    则在区间单调递减,即,即,
    故实数的取值范围是,.故选:.
    6.(2023全国乙卷数学(文))已知等差数列的公差为,集合,若,则( )
    A.-1B.C.0D.
    【答案】B
    【详解】依题意,等差数列中,,
    显然函数的周期为3,而,即最多3个不同取值,又,
    则在中,或,
    于是有,即有,解得,
    所以,.
    故选:B
    7.(2023全国乙卷数学(文))已知实数满足,则的最大值是( )
    A.B.4C.D.7
    【答案】C
    【详解】法一:令,则,
    代入原式化简得,
    因为存在实数,则,即,
    化简得,解得,
    故 的最大值是,
    法二:,整理得,
    令,,其中,
    则,
    ,所以,则,即时,取得最大值,
    法三:由可得,
    设,则圆心到直线的距离,
    解得故选:C.
    8.(2023全国乙卷数学(理))已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,,若的面积等于,则该圆锥的体积为( )
    A.B.C.D.
    【答案】B
    【详解】在中,,而,取中点,连接,有,如图,
    ,,由的面积为,得,
    解得,于是,
    所以圆锥的体积.
    故选:B
    二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得5分,部分选对的得2分,有选错的得0分。
    9.(2021新课标全国Ⅱ卷)下列统计量中,能度量样本的离散程度的是( )
    A.样本的标准差B.样本的中位数
    C.样本的极差D.样本的平均数
    【答案】AC
    【解析】由标准差的定义可知,标准差考查的是数据的离散程度;
    由中位数的定义可知,中位数考查的是数据的集中趋势;
    由极差的定义可知,极差考查的是数据的离散程度;
    由平均数的定义可知,平均数考查的是数据的集中趋势;故选:AC.
    10.(2022新课标全国Ⅱ卷)已知函数的图像关于点中心对称,则( )
    A.在区间单调递减
    B.在区间有两个极值点
    C.直线是曲线的对称轴
    D.直线是曲线的切线
    【答案】AD
    【解析】由题意得:,所以,,
    即,
    又,所以时,,故.
    对A,当时,,由正弦函数图象知在上是单调递减;
    对B,当时,,由正弦函数图象知只有1个极值点,由,解得,即为函数的唯一极值点;
    对C,当时,,,直线不是对称轴;
    对D,由得:,
    解得或,
    从而得:或,
    所以函数在点处的切线斜率为,
    切线方程为:即.
    故选:AD.
    11.(2022新课标全国Ⅰ卷)已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则( )
    A.C的准线为B.直线AB与C相切
    C.D.
    【答案】BCD
    【解析】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;
    ,所以直线的方程为,
    联立,可得,解得,故B正确;
    设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,
    所以,直线的斜率存在,设其方程为,,
    联立,得,
    所以,所以或,,
    又,,
    所以,故C正确;
    因为,,
    所以,而,故D正确.
    故选:BCD
    12.(2023新课标全国Ⅰ卷)已知正方体,则( )
    A.直线与所成的角为B.直线与所成的角为
    C.直线与平面所成的角为D.直线与平面ABCD所成的角为
    【答案】ABD
    【解析】如图,连接、,因为,所以直线与所成的角即为直线与所成的角,
    因为四边形为正方形,则,故直线与所成的角为,A正确;
    连接,因为平面,平面,则,
    因为,,所以平面,
    又平面,所以,故B正确;
    连接,设,连接,
    因为平面,平面,则,
    因为,,所以平面,
    所以为直线与平面所成的角,
    设正方体棱长为,则,,,
    所以,直线与平面所成的角为,故C错误;
    因为平面,所以为直线与平面所成的角,易得,故D正确.
    故选:ABD
    第II卷(非选择题)
    三、填空题:本题共4小题,每小题5分,共20分。
    13.(2021•新高考Ⅱ)写出一个同时具有下列性质①②③的函数 .
    ①;②当时,;③是奇函数.时,;当时,;是奇函数.
    【解析】.
    另幂函数即可满足条件①和②;偶函数即可满足条件③,
    综上所述,取即可.
    14.(2023•乙卷(理))已知为等比数列,,,则 .
    【答案】.
    【解析】等比数列,
    ,解得,
    而,可得,
    即,

    15.(2023新高考天津卷)在的展开式中,项的系数为_________.
    【答案】
    【详解】展开式的通项公式,
    令可得,,
    则项的系数为.
    16.(2021•新高考Ⅱ)已知函数,,,函数的图象在点,和点,的两条切线互相垂直,且分别交轴于,两点,则的取值范围是 .
    【答案】
    【解析】当时,,导数为,
    可得在点,处的斜率为,
    切线的方程为,
    令,可得,即,
    当时,,导数为,
    可得在点,处的斜率为,
    令,可得,即,
    由的图象在,处的切线相互垂直,可得,
    即为,,,
    所以.
    四、解答题:本题共6小题,共70分,解答应写出必要的文字说明、证明过程及验算步骤。
    17.(10分)
    【解析】(1),,
    根据题意可得,

    ,又,
    解得,,
    ,;
    (2)为等差数列,为等差数列,且,
    根据等差数列的通项公式的特点,可设,则,且;
    或设,则,且,
    ①当,,时,
    则,
    ,,又,
    解得;
    ②当,,时,
    则,
    ,,又,
    此时无解,
    综合可得.
    18.(12分)
    【解析】(1),,







    ,即,
    又,,
    解得,
    又,,

    (2)由(1)可知,,


    ,,
    设边上的高为,
    则,

    解得,即边上的高为6.
    19.(12分)
    【解析】(1)当漏诊率(c)时,
    则,解得;
    (c);
    (2)当,时,
    (c)(c)(c),
    当,时,(c)(c)(c),
    故(c),
    所以(c)的最小值为0.02.
    20.(12分)
    【解析】(1)由直三棱柱的体积为4,可得,
    设到平面的距离为,由,
    ,,解得.
    (2)连接交于点,,四边形为正方形,
    ,又平面平面,平面平面,
    平面,,
    由直三棱柱知平面,,又,
    平面,,
    以为坐标原点,,,所在直线为坐标轴建立如图所示的空间直角坐标系,
    ,,又,解得,
    则,0,,,2,,,0,,,2,,,1,,
    则,2,,,1,,,0,,
    设平面的一个法向量为,,,
    则,令,则,,
    平面的一个法向量为,0,,
    设平面的一个法向量为,,,
    ,令,则,,
    平面的一个法向量为,1,,
    ,,
    二面角的正弦值为.
    21.(12分)
    【解析】(1)由题意可得,,
    解得,,
    因此的方程为,
    (2)解法一:设直线的方程为,,将直线的方程代入可得,
    △,
    ,,


    设点的坐标为,,则,
    两式相减可得,


    解得,
    两式相加可得,


    解得,
    ,其中为直线的斜率;
    若选择①②:
    设直线的方程为,并设的坐标为,,的坐标为,,
    则,解得,,
    同理可得,,
    ,,
    此时点的坐标满足,解得,,
    为的中点,即;
    若选择①③:
    当直线的斜率不存在时,点即为点,此时不在直线上,矛盾,
    当直线的斜率存在时,设直线的方程为,并设的坐标为,,的坐标为,,
    则,解得,,
    同理可得,,
    此时,

    由于点同时在直线上,故,解得,
    因此.
    若选择②③,
    设直线的方程为,并设的坐标为,,的坐标为,,
    则,解得,,
    同理可得,,
    设的中点,,则,,
    由于,故在的垂直平分线上,即点在直线上,
    将该直线联立,解得,,
    即点恰为中点,故点在直线上.
    (2)解法二:由已知得直线的斜率存在且不为零,直线的斜率不为零,
    若选由①②③,或选由②③①:由②成立可知直线的斜率存在且不为0.
    若选①③②,则为线段的中点,假设的斜率不存在,
    则由双曲线的对称性可知在轴上,即为焦点,
    此时由对称性可知、关于轴对称,从而,已知不符.
    综上,直线的斜率存在且不为0,
    直线的斜率为,直线的方程为.
    则条件①在直线上,等价于,
    两渐近线的方程合并为,
    联立方程组,消去并化简得:,
    设,,,,线段中点为,,
    则.,
    设,,
    则条件③等价于,
    移项并利用平方差公式整理得:






    由题意知直线的斜率为,直线的斜率为,
    由,,

    直线的斜率,
    直线,即,
    代入双曲线的方程为,即中,
    得,
    解得的横坐标为,
    同理,,,

    条件②等价于,
    综上所述:
    条件①在上等价于,
    条件②等价于,
    条件③等价于.
    选①②③:
    由①②解得,③成立;
    选①③②:
    由①③解得:,,,②成立;
    选②③①:
    由②③解得:,,,①成立.
    22.(12分)
    【解析】(1)证明:设,,
    则,,
    在上单调递减,

    在上单调递减,

    即,,
    ,,
    设,,
    则,
    在上单调递增,
    ,,
    即,,
    ,,
    综合可得:当时,;
    (2),,
    且,,
    ①若,即时,
    易知存在,使得时,,
    在上单调递增,,
    在上单调递增,这显然与为函数的极大值点相矛盾,故舍去;
    ②若,即或时,
    存在,使得,时,,
    在,上单调递减,又,
    当时,,单调递增;
    当时,,单调递减,满足为的极大值点,符合题意;
    ③若,即时,为偶函数,
    只考虑的情况,
    此时,时,

    在上单调递增,与显然与为函数的极大值点相矛盾,故舍去.
    综合可得:的取值范围为,,.

    相关试卷

    重组卷03-冲刺2023年高考数学真题重组卷(新高考地区专用):

    这是一份重组卷03-冲刺2023年高考数学真题重组卷(新高考地区专用),文件包含重组卷03-冲刺2023年高考数学真题重组卷解析版docx、重组卷03-冲刺2023年高考数学真题重组卷参考答案docx、重组卷03-冲刺2023年高考数学真题重组卷原卷版docx等3份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。

    重组卷04-冲刺2023年高考数学真题重组卷(新高考地区专用):

    这是一份重组卷04-冲刺2023年高考数学真题重组卷(新高考地区专用),文件包含重组卷04-冲刺2023年高考数学真题重组卷解析版docx、重组卷04-冲刺2023年高考数学真题重组卷参考答案docx、重组卷04-冲刺2023年高考数学真题重组卷原卷版docx等3份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。

    重组卷02-冲刺2023年高考数学真题重组卷(新高考地区专用):

    这是一份重组卷02-冲刺2023年高考数学真题重组卷(新高考地区专用),文件包含重组卷02-冲刺2023年高考数学真题重组卷解析版docx、重组卷02-冲刺2023年高考数学真题重组卷参考答案docx、重组卷02-冲刺2023年高考数学真题重组卷原卷版docx等3份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map