2023-2024学年浙江省桐庐县数学八上期末监测试题含答案
展开
这是一份2023-2024学年浙江省桐庐县数学八上期末监测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列选项中最简分式是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1. “赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,每一个直角三角形的两条直角的长分别是3和4,则中间的小正方形和大正方形的面积比是( )
A.3 : 4B.1 : 25C.1:5D.1:10
2.如图,AC∥DF,AC=DF,下列条件不能使△ABC≌△DEF的是( )
A.∠A=∠DB.∠B=∠EC.AB=DED.BF=EC
3.已知A,B两点的坐标是A(5,a),B(b,4),若AB平行于x轴,且AB=3,则a+b的值为( )
A.6或9B.6C.9D.6或12
4.如图,,以点为圆心,小于长为半径作弧,分别交、于、两点,再分别以为圆心,大于的长为半径画弧,两弧交于点,作射线,交于点,若,则的度数为( )
A.B.C.D.
5.如图,直线 AD,BE 相交于点 O,CO⊥AD 于点 O,OF 平分∠BOC.若∠AOB=32°,则∠AOF 的度数为
A.29°B.30°C.31°D.32°
6.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )
A.AC=BDB.∠CAB=∠DBAC.∠C=∠DD.BC=AD
7.下列选项中最简分式是( )
A.B.C.D.
8.如图,直线,点、在上,点在上,若、,则的大小为( )
A.B.C.D.
9.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是( )
A.0B.1C.2D.3
10.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为( )
A.140°B.100°C.50°D.40°
二、填空题(每小题3分,共24分)
11.计算:6x2÷2x= .
12.如果x2+mx+6=(x﹣2)(x﹣n),那么m+n的值为_____.
13.若n边形的内角和是它的外角和的2倍,则n= .
14.如图,平面直角坐标系中有点A(0,1)、B(,0).
连接AB,以A为圆心,以AB为半径画弧,交y轴于点P1;
连接BP1,以B为圆心,以BP1为半径画弧,交x轴于点P2;
连接P1P2,以P1为圆心,以P1P2为半径画弧,交y轴于点P3;
按照这样的方式不断在坐标轴上确定点Pn的位置,那么点P6的坐标是_____.
15.如果,则__________ .
16.如图,一架长25m的云梯,斜靠在墙上,云梯底端在点A处离墙7米,如果云梯的底部在水平方向左滑动8米到点B处,那么云梯的顶端向下滑了_____m.
17.如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向160米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为________米.
18.如图,△ABC中,AB=AC=15cm,AB的垂直平分线交AB于D,交AC于E,若BC=8cm,则△EBC的周长为___________cm.
三、解答题(共66分)
19.(10分)问题背景:如图1,在四边形ABCD中,∠ABC=90°,AB=CB=DB,DB⊥AC.
①直接写出∠ADC的大小;
②求证:AB1+BC1=AC1.
迁移应用:如图1,在四边形ABCD中,∠BAD=60°,AB=BC=CD=DA=1,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE、CF.
①求证:△CEF是等边三角形;
②若∠BAF=45°,求BF的长.
20.(6分)先化简:÷(),再从﹣3<x<2的范围内选取一个你最喜欢的整数代入,求值.
21.(6分)如图所示,△ABC的顶点在正方形格点上.
(1)写出顶点C的坐标;
(2)作△ABC关于y轴对称的△A1B1C1 .
22.(8分)数轴上点表示,点关于原点的对称点为,设点所表示的数为,
(1)求的值;
(2)求的值.
23.(8分)在平面直角坐标系中,点是一次函数图象上一点.
(1)求点的坐标.
(2)当时,求的取值范围.
24.(8分)某校八年级班学生利用双休日时间去距离学校的博物馆参观.一部分学生骑自行车先走,过了后,其余学生乘汽车沿相同路线出发,结果他们同时到达,己知汽车的速度是骑车学生速度的倍,求骑车学生的速度和汽车的速度.
25.(10分)用无刻度直尺作图并解答问题:
如图,和都是等边三角形,在内部做一点,使得,并给予证明.
26.(10分)若一个三角形的三边长、、满足,你能根据已知条件判断这个三角形的形状吗?
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、D
4、A
5、A
6、A
7、A
8、B
9、B
10、B
二、填空题(每小题3分,共24分)
11、3x.
12、-1
13、6
14、 (27,0)
15、 ;
16、1
17、1
18、1
三、解答题(共66分)
19、问题背景①∠ADC=135°;②证明见解析;迁移应用:①证明见解析;②BF=.
20、;取x=-2原式=
21、(1)C(-2,-1);(2)见解析
22、(1);(2)1.
23、(1);(2)
24、骑车学生的速度为:15km/h,汽车的速度为:30km/h
25、图详见解析,证明详见解析
26、等边三角形,见解析
相关试卷
这是一份2023-2024学年浙江省桐庐县数学九上期末统考试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份浙江省台州市临海市2023-2024学年八上数学期末监测试题含答案,共7页。试卷主要包含了已知等内容,欢迎下载使用。
这是一份期浙江省金华市2023-2024学年八上数学期末学业质量监测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。