2023-2024学年重庆西师附中数学八上期末质量跟踪监视模拟试题含答案
展开
这是一份2023-2024学年重庆西师附中数学八上期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,已知,下列说法正确的是,下列运算结果为的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.现有两根木棒长度分别是厘米和厘米,若再从下列木棒中选出一根与这两根组成一个三角形(根木棒首尾依次相接),应选的木棒长度为( )
A.厘米B.厘米C.厘米D.厘米
2.如图,在中, ,以AB,AC,BC为边作等边,等边.等边.设的面积为,的面积为,的面积为,四边形DHCG的面积为,则下列结论正确的是( )
A.B.
C.D.
3.已知,,那么的值是( )
A.11B.16C.60D.150
4.如图,如在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于( )
A.8B.4C.2D.1
5.已知:是线段外的两点, ,点在直线上,若,则的长为( )
A.B.C.D.
6.一个多边形的内角和是外角和的2倍,这个多边形是( )
A.四边形B.五边形C.六边形D.八边形
7.下列说法正确的是( )
A.形如的式子叫分式B.整式和分式统称有理式
C.当x≠3时,分式无意义D.分式与的最简公分母是a3b2
8.如图,四边形ABCD与四边形FGHE关于一个点成中心对称,则这个点是( )
A.O1B.O2C.O3D.O4
9.点,都在直线上,则与的大小关系是( )
A.B.C.D.不能确定
10.下列运算结果为的是
A.B.C.D.
二、填空题(每小题3分,共24分)
11.因式分解:-2x2+2=___________.
12.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是_____.
13.如图,长方形两边长,两顶点分别在轴的正半轴和轴的正半轴上运动,则顶点到原点的距离最大值是__________.
14.若,,且,则__________.
15.观察下列等式:;;......从上述等式中找出规律,并利用这一规律计算:=___________.
16.如图,矩形ABCD中,AB=5,BC=12,对角线AC,BD交于点O,E,F分别为AB,AO中点,则线段EF=_________.
17.如图,在△ABC中,∠ACB=90°,∠BAC=40°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为____________.
18.如图所示,在△ABC中,,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到直线AB的距离是______cm.
三、解答题(共66分)
19.(10分)如图,某中学校园内有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划在中间留一块边长为(a+b)米的正方形地块修建一座雕像,然后将阴影部分进行绿化.
(1)求绿化的面积.(用含a、b的代数式表示)
(2)当a=2,b=4时,求绿化的面积.
20.(6分)如图,三个顶点的坐标分别为,,.
(1)请画出关于轴成轴对称的图形,并写出、、的坐标;
(2)求的面积;
(3〉在轴上找一点,使的值最小,请画出点的位置.
21.(6分)2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批
花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多元.
(1)第一批花每束的进价是多少元.
(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?
22.(8分)某茶叶经销商以每千克元的价格购进一批宁波白茶鲜茶叶加工后出售,已知加工过程中质量损耗了,该商户对该茶叶试销期间,销售单价不低于成本单价,且每千克获利不得高于成本单价的,经试销发现,每天的销售量(千克)与销售单价(元/千克)符合一次函数,且时,;时,.
(1)求一次函数的表达式.
(2)若该商户每天获得利润为元,试求出销售单价的值.
23.(8分)学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:
(1)求该校七年一班此次预选赛的总人数;
(2)补全条形统计图,并求出书法所在扇形圆心角的度数;
(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?
24.(8分)某超市老板到批发市场选购A、B两种品牌的儿童玩具,每个A品牌儿童玩具进价比B品牌每个儿童玩具进价多2.5元.已知用200元购进A种儿童玩具的数量是用75元购进B种儿童玩具数量的2倍.求A、B两种品牌儿童玩具每个进价分别是多少元?
25.(10分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了箭,他们的总成绩(单位:环)相同.小宇根据他们的成绩绘制了如图尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).
(1)a=_________
(2)
(3)参照小宇的计算方法,计算乙成绩的方差;
(4)请你从平均数和方差的角度分析,谁将被选中.
26.(10分)如图,已知在平面直角坐标系中,△ABC三个顶点的坐标分别是A(1,1),B (4,2),C(3,4).
(1)画出△ABC关于y轴对称的△A1B1C1(要求:A与A1,B与B1,C与C1相对应);
(2)通过画图,在x轴上确定点Q,使得QA与QB之和最小,画出QA与QB,并直接写出点Q的坐标.点Q的坐标为 .
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、D
4、A
5、B
6、C
7、B
8、A
9、B
10、D
二、填空题(每小题3分,共24分)
11、-2(x+1)(x-1)
12、92°.
13、
14、1
15、1
16、3.1.
17、20°或40°或70°或100°
18、1
三、解答题(共66分)
19、(1)(5a2+3ab)平方米;(2)绿化面积是44平方米.
20、(1)图见解析;的坐标为、的坐标为、的坐标为;(2);(3)见解析.
21、(1)2元;(2)第二批花的售价至少为元;
22、(1).(2).
23、(1)七年一班此次预选赛的总人数是24人;(2),图见解析;(3)本次比赛全学年约有40名学生获奖
24、A、B两种品牌儿童玩具每个进价分别是10和7.5元
25、(1)4;(2)6;(3)1.6;(4)乙将被选中,详见解析
26、(1)见解析;(2)见解析,(2,0)
第次
第次
第次
第次
第次
甲成绩
乙成绩
相关试卷
这是一份2023-2024学年陕西师大附中九上数学期末质量跟踪监视模拟试题含答案,共10页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份重庆市实验中学2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中,是随机事件的是等内容,欢迎下载使用。
这是一份重庆梁平县联考2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果是,化简的结果是,函数y=与y=kx2﹣k等内容,欢迎下载使用。