![云南省南涧彝族自治县2023-2024学年八上数学期末质量跟踪监视试题含答案第1页](http://img-preview.51jiaoxi.com/2/3/15172510/0-1704673048609/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![云南省南涧彝族自治县2023-2024学年八上数学期末质量跟踪监视试题含答案第2页](http://img-preview.51jiaoxi.com/2/3/15172510/0-1704673048643/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![云南省南涧彝族自治县2023-2024学年八上数学期末质量跟踪监视试题含答案第3页](http://img-preview.51jiaoxi.com/2/3/15172510/0-1704673048662/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
云南省南涧彝族自治县2023-2024学年八上数学期末质量跟踪监视试题含答案
展开
这是一份云南省南涧彝族自治县2023-2024学年八上数学期末质量跟踪监视试题含答案,共7页。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.若实数满足等式,且恰好是等腰的两条的边长,则的周长是( )
A.6或8B.8或10C.8D.10
2.分式方程+=1的解是( )
A.x=-1B.x=2C.x=3D.x=4
3.如图,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于( )
A.63°B.113°C.55°D.62°
4.平方根等于它本身的数是( )
A.0B.1,0C.0, 1 ,-1D.0, -1
5.甲、乙两车从城出发匀速行驶至城.在整个行驶过程中,甲、乙两车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示.则下列结论:
①,两城相距千米;
②乙车比甲车晚出发小时,却早到小时;
③乙车出发后小时追上甲车;
④当甲、乙两车相距千米时,或
其中正确的结论有( )
A.个B.个C.个D.个
6.如图,在△ABC中,AB=AC,BC=10,S△ABC=60,AD⊥BC于点D,EF垂直平分AB,交AB于点E,AC于点F,在EF上确定一点P,使PB+PD最小,则这个最小值为( )
A.10B.11
C.12D.13
7.利用加减消元法解方程组,下列说法正确的是( )
A.要消去,可以将①×5+②×3
B.要消去,可以将①×+②×2
C.要消去,可以将①×3+②×
D.要消去,可以将①×5+②×2
8.如图,若△ABC≌△DEF,且BE=5,CF=2,则BF的长为( )
A.2B.3C.1.5D.5
9.下列大学的校徽图案是轴对称图形的是( )
A.B.C.D.
10.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是( )
A.0B.1C.2D.3
二、填空题(每小题3分,共24分)
11.计算的结果等于_____________.
12.已知等腰三角形的底角为15°,腰长为30cm,则此等腰三角形的面积为_____.
13.当直线经过第二、三、四象限时,则的取值范围是_____.
14.已知,则的值为_______.
15.函数y=x+1与y=ax+b的图象如图所示,那么,使y、y的值都大于0的x的取值范围是______.
16.已知,如图,在直线l的两侧有两点A、B在直线上画出点P,使PA+PB最短,画法:______.
17.如图,△ABC中,∠ACB=90°,AC=8,BC=6,分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,连接EF、ND,则图中阴影部分的面积之和等于_____.
18.一个多边形的内角和是它的外角和的5倍,则这个多边形的边数为____________.
三、解答题(共66分)
19.(10分)如图,直线分别与轴,轴交于点,,过点的直线交轴于点.为的中点,为射线上一动点,连结,,过作于点.
(1)直接写出点,的坐标:(______,______),(______,______);
(2)当为中点时,求的长;
(3)当是以为腰的等腰三角形时,求点坐标;
(4)当点在线段(不与,重合)上运动时,作关于的对称点,若落在轴上,则的长为_______.
20.(6分)在日常生活中,取款、上网等都需要密码.有一种用“因式分解”法设计的密码.原理是:如:多项式因式分解的结果是,若取时,则各个因式的值是:,将3个数字按从小到大的顺序排列,于是可以把“400804”作为一个六位数的密码.对于多项式,当时,写出用上述方法产生的密码,并说明理由.
21.(6分)如图,已知∠1=∠2,∠C=∠D,求证:∠A=∠F.
22.(8分)解下列不等式(组):
(1)
(2).
23.(8分)如图,在平面直角坐标系中,直线l过点M(1,0)且与y轴平行,△ABC的三个顶点的坐标分别为A(-2,5),B(-4,3),C(-1,1).
(1)作出△ABC关于x轴对称;
(2)作出△ABC关于直线l对称,并写出三个顶点的坐标.
(3)若点P的坐标是(-m,0),其中m>0,点P关于直线l的对称点P1,求PP1的长.
24.(8分)已知三角形△ABC,AB=3,AC=8,BC长为奇数,求BC的长.
25.(10分)甲、乙两人同时从相距千米的地匀速前往地,甲乘汽车,乙骑电动车,甲到达地停留半个小时后按原速返回地,如图是他们与地之间的距离(千米)与经过的时间(小时)之间的函数图像.
(1) ,并写出它的实际意义 ;
(2)求甲从地返回地的过程中与之间的函数表达式,并写出自变量的取值范围;
(3)已知乙骑电动车的速度为千米/小时,求乙出发后多少小时与甲相遇?
26.(10分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
(1)当点D在AC上时,如下面图1,线段BD、CE有怎样的数量关系和位置关系?请直接写出结论,不需要证明.
(2)将下面图1中的△ADE绕点A顺时针旋转α角(0°
相关试卷
这是一份云南省昭通市昭阳区2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,有一组数据,下列事件是不可能发生的是等内容,欢迎下载使用。
这是一份云南省南涧彝族自治县2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法中错误的是,已知是方程的一个解,则的值是等内容,欢迎下载使用。
这是一份云南省昆明市西山区2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了正六边形的边心距与半径之比为等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)