内蒙古科尔沁左翼中旗实验高级中学2024届高三上册第一次月考数学试题(含解析)
展开
这是一份内蒙古科尔沁左翼中旗实验高级中学2024届高三上册第一次月考数学试题(含解析),共12页。试卷主要包含了函数的定义域为,函数的图像大致为,已知函数,则,设,,,则,下列命题中为真命题的是,函数的零点所在区间为,下列说法正确的是,若,则的解集为等内容,欢迎下载使用。
2023--2024学年度高三第一次月考考试
考试时间:120分钟
注意事项:
1.答题前,考生先将自己的姓名准考证号码填写清楚.
2.请按照题号顺序在答题卡各题目的答题区域内作答,在试卷上答题无效.
一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.若,且,则( ).
A.B.或0C.或1或0D.或或0
2.已知集合,,若,则实数的值为
A.B.C.1D.0
3.函数的定义域为( )
A.B.C.D.
4.函数的图像大致为( )
A.B.
C.D.
5.已知函数,则
A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数
C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数
6.设,,,则( )
A.B.
C.D.
7.下列命题中为真命题的是( )
A.“”的充要条件是“”
B.“”是“”的既不充分也不必要条件
C.命题“,”的否定是,”
D.“,”是“”的必要条件
8.函数的零点所在区间为( )
A.B.C.D.
9.下列说法正确的是( ).
A.命题“若,则或”的否命题是“若,则或”
B.“”是“”的必要不充分条件
C.“”是“”的充分不必要条件
D.命题“,”的否定是“,”
10.若,则的解集为( )
A.(0,)B.(-1,0)(2,)
C.(2,)D.(-1,0)
11.过点P(0,2)作曲线y=的切线,则切点坐标为( )
A.(1,1)B.(2,)C.(3,)D.(0,1)
12.已知函数为上的偶函数,对任意,,均有成立,若,则的大小关系是( )
A.B.C.D.
二、填空题
13.函数的定义域为 .
14.已知函数的图象经过定点P,则点P的坐标是 .
15.已知分段函数,则 , .
16.函数的值域为R,则的取值范围是 .
三、解答题
17.设全集为R,集合,.
(1)求;
(2)已知,若,求实数的取值范围.
18.化简并求值:
(1)
(2)
(3)(求导)
(4)(求导)
19.已知函数f(x)=.
(1)求函数f(x)的定义域;
(2)判断f(x)的奇偶性并证明.
20.已知函数.
(1)求曲线在点处的切线方程;
(2)求函数的极值.
21.已知集合,.
(1)若,求;
(2)若,设命题:,命题:.已知是的充分不必要条件,求实数的取值围.
22.已知函数.
(1)若是定义在上的偶函数,求实数的值;
(2)在(1)的条件下,若,求函数的零点.
参考答案与解析
1.B
【分析】利用条件,得或,求解之后进行验证即可.
【解答】解:因为,,
若,则或,解得x=2或−2或1或0.
①当x=0,集合A={1,4,0},B={1,0},满足.
②当x=1,集合A={1,4,1},不成立.
③当x=2,集合A={1,4,2},B={1,4},满足.
④当x=−2,集合A={1,4,−2},B={1,4},满足.
综上,x=2或−2或0.
故选:B.
【点评】本题主要考查集合关系的应用,考查分类讨论的思想,属于基础题.
2.B
【解答】因为,则a2+1=2,即a=±1. 但当a=1时,A={1,2,0},
此时,不合题意,舍去,所以a=-1,故选B.
3.B
【分析】根据对数函数的真数大于即可求解.
【解答】由题意可得:,解得:,
所以函数的定义域为,
故选:B.
4.A
【分析】利用排除法,先判断函数的奇偶性,再取特殊值验证即可.
【解答】函数的定义域为,
因为,
所以函数为奇函数,其图像关于原点对称,所以排除CD,
因为,所以排除B,
故选:A
5.A
【解答】分析:讨论函数的性质,可得答案.
解答:函数的定义域为,且 即函数 是奇函数,
又在都是单调递增函数,故函数 在R上是增函数.
故选A.
点评:本题考查函数的奇偶性单调性,属基础题.
6.C
【分析】利用函数的单调性,并结合取中间值法即可判断大小.
【解答】,
,
,
故选:C
7.BC
【分析】对A:由,但即可判断;
对B:取,满足,但;同理取,满足,但即可判断;
对C:根据含量词的命题的否定即可判断;
对D:因为,但即可判断.
【解答】解:对A:由,但,所以是的充分不必要条件,故选项A错误;
对B:取,满足,但,所以;同理取,满足,但,所以,所以是的既不充分也不必要条件,故选项B正确;
对C:命题“,”的否定是,”,故选项C正确;
对D:因为,但,所以“,”是“”的充分不必要条件,故选项D错误;
故选:BC.
8.C
【分析】依次判断各个区间端点处函数值的符号,根据零点存在定理可判断得到结果.
【解答】由题意得:定义域为,且在定义域上为增函数,
故至多一个零点,
;;
零点所在区间为
故选:
【点评】本题考查利用零点存在定理判断零点所在区间的问题,属于基础题.
9.B
【解析】根据否命题、命题的否定、充分条件、必要条件的概念分析四个选项可得答案.
【解答】命题“若,则或”的否命题是“若,则且”,故A不正确;
“”是“”的必要不充分条件,说法正确,故B正确;
因为指数函数为增函数,所以,即“”是“”的充要条件,故C不正确;
命题“,”的否定是“,”,故D不正确.
故选:B
【点评】结论点评:本题考查充分不必要条件的判断,一般可根据如下规则判断:
(1)若是的必要不充分条件,则对应集合是对应集合的真子集;
(2)是的充分不必要条件, 则对应集合是对应集合的真子集;
(3)是的充分必要条件,则对应集合与对应集合相等;
(4)是的既不充分又不必要条件, 对的集合与对应集合互不包含.
10.C
【解答】
11.A
【分析】先设切点,再根据导数几何意义列方程,解得结果.
【解答】设切点,
,即切点
故选:A
【点评】本题考查导数几何意义,考查基本分析求解能力,属基础题.
12.D
【分析】根据条件判断函数的单调性,然后利用单调性进行比较即可.
【解答】解:对任意,,均有成立,
此时函数在区间为减函数,
是偶函数,
当时,为增函数,
,,,
因为,所以,
因为,所以,
所以,
所以,
即.
故选:D.
13.
【分析】根据定义域的求法,即可求解.
【解答】解:,得,
故答案为:
14.
【分析】利用,恒为1,求出x值及对应的函数值作答.
【解答】在函数中,当,即时,,
所以点P的坐标是.
故答案为:
15. 2 0
【分析】根据分段函数定义进行求解即可
【解答】;,则
故答案为:2;0
【点评】本题考查分段函数具体函数值的求法,属于基础题
16.
【分析】由函数的值域为R,可得能够取到大于的所有数,再由判别式,即 可 求 解.
【解答】解:∵函数的值域为R,
能够取到大于的所有数,
则,
解得:或,
∴实数的取值范围是.
故答案为:.
17.(1);(2)
【分析】(1)由题意,求得集合和,进而根据集合的运算,即可求解;
(2)由,分类讨论和,两种情况求解,即可得到答案.
【解答】(1)由得或
由,,
(2)① ,即时,,成立;
② ,即时,
得
综上所述,的取值范围为.
【点评】本题考查集合的运算问题,对于集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.
18.(1)
(2)
(3)
(4)
【分析】(1)利用根式与分数指数幂互化公式及指数幂运算可得结果;
(2)利用对数运算法则可得结果;
(3)(4)利用基本函数及四则运算求导法则可得结果
【解答】(1)
.
(2)
.
(3)因为,所以.
(4)因为,所以.
19.(1){x|x≠±1};(2)偶函数,证明见解析.
【解析】(1)定义域是使解析式有意义的自变量的集合,本题中,只要分母不为0即可;
(2)由于定义域关于原点对称,因此再计算与比较其关系,即可证明.
【解答】(1)解1﹣x2≠0得,x≠±1,
∴f(x)的定义域为{x|x≠±1},
(2)f(x)为偶函数,
证明:由(1)知f(x)的定义域为{x|x≠±1},定义域关于原点对称,
又,
∴f(x)为偶函数.
20.(1);(2),.
【解答】试题分析:
(1)利用导函数首先求得切线的斜率,然后利用点斜式求得曲线的切线方程即可;
(2)对函数求导,结合导函数的性质有函数的单调性,由函数的单调性确定函数的极值即可.
试题解析:(1)由题 ,
故,又,
故曲线在点处的切线方程为,即;
(2)由可得或,
如下表所示,得
,.
21.(1);(2).
【解析】(1)由一元二次不等式可得,结合补集、交集的概念即可得解;
(2)由一元二次不等式可得,转化条件为,即可得解.
【解答】(1)当时,,则,
所以;
(2)时,,
因为命题是命题的充分不必要条件,则,
所以且等号不能同时成立,解得,
所以实数的取值范围为.
22.(1);(2)和.
【分析】(1)利用是定义在上的偶函数,取特殊值,即可解出a;
并检验其符合题意.
(2)令,得到,用换元法令,得到,解方程即可求解.
【解答】(1)∵是定义在上的偶函数.
∴,即,
故.
函数,
因为.
所以满足题意.
(2)依题意,令,
则有,得,
令,则,
解得,.
即,.
∴函数有两个零点,分别为和.
1
0
0
极大值
极小值
相关试卷
这是一份2023-2024学年内蒙古科尔沁左翼中旗高三上学期第一次月考数学模拟试题(含解析),共13页。
这是一份2024届内蒙古自治区通辽市科尔沁左翼中旗实验高级中学高三上学期12月月考数学(文)试题含答案,共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2024届内蒙古自治区通辽市科尔沁左翼中旗实验高级中学高三上学期12月月考数学(理)试题含答案,共13页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。