2023-2024学年襄樊市重点中学数学八上期末学业水平测试试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.将34.945取近似数精确到十分位,正确的是( )
A.34.9B.35.0C.35D.35.05
2.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是( )
A.∠A=∠DB.BC=EFC.∠ACB=∠FD.AC=DF
3.甲,乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后,结果如下。 某同学根据上表分析,得出如下结论。
(1)甲,乙两班学生成绩的平均水平相同。
(2)乙班优秀的人数多于甲班优秀的人数。(每分钟输入汉字≧150个为优秀。)
(3)甲班成绩的波动情况比乙班成绩的波动小。
上述结论中正确的是( )
A.(1) (2) (3)B.(1) (2)C.(1) (3)D.(2)(3)
4.如图,在△ABC中,AB=BC,顶点B在y轴上,顶点C的坐标为(2,0),若一次函
数y=kx+2的图象经过点A,则k的值为( )
A.B.-C.1D.-1
5.如图,已知点A(1,-1),B(2,3),点P为x轴上一点,当|PA-PB|的值最大时,点P的坐标为( )
A.(-1,0)B.(,0)C.(,0)D.(1,0)
6.如图,在Rt△ABO中,∠OBA=90°,A(8,8),点C在边AB上,且,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为( )
A.(2,2)B.C.D.
7.下列各式运算正确的是( )
A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.a0=1
8.已知等边三角形ABC.如图,
(1)分别以点A,B为圆心,大于的AB长为半径作弧,两弧相交于M,N两点;
(2)作直线MN交AB于点D;
(2)分别以点A,C为圆心,大于AC的长为半径作弧,两弧相交于H,L两点;
(3)作直线HL交AC于点E;
(4)直线MN与直线HL相交于点O;
(5)连接OA,OB,OC.
根据以上作图过程及所作图形,下列结论:①OB=2OE;②AB=2OA;③OA=OB=OC;④∠DOE=120°,正确的是( )
A.①②③④B.①③④C.①②③D.③④
9.若分式有意义,则x的取值范围是( )
A.B.C.D.
10.如图,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于( )
A.63°B.113°C.55°D.62°
二、填空题(每小题3分,共24分)
11.如图,的三条角平分线交于点O,O到AB的距离为3,且的周长为18,则的面积为______.
12.已知等腰三角形一腰上的中线将这个等腰三角形的周长分为9和15两部分,则这个等腰三角形的腰长为__________.
13.若,,,则的大小关系用“<”号排列为 _________.
14.分解因式:_______
15.如图,已知AB∥CF,E为DF的中点.若AB=13cm,CF=7cm,则BD=_____cm.
16.在平面直角坐标系中,把直线y=-2x+3沿y轴向上平移两个单位后,得到的直线的函数关系式为_____.
17.若,则__________.
18.直线与x轴的交点为M,将直线向左平移5个单位长度,点M平移后的对应点的坐标为______________,平移后的直线表示的一次函数的解析式为_____________.
三、解答题(共66分)
19.(10分)某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):
经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:
(1)计算两班的优秀率;
(2)求两班比赛数据的中位数;
(3)求两班比赛数据的方差;
(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.
20.(6分)一次函数y1=﹣2x+b的图象交x轴于点A、与正比例函数y2=2x的图象交于点M(m,m+2),
(1)求点M坐标;
(2)求b值;
(3)点O为坐标原点,试确定△AOM的形状,并说明你的理由.
21.(6分)射击训练班中的甲、乙两名选手在5次射击训练中的成绩依次为(单位:环):
甲:8,8,7,8,9
乙:5,9,7,10,9
教练根据他们的成绩绘制了如下尚不完整的统计图表:
根据以上信息,请解答下面的问题:
(1)α= ,b= ,c= ;
(2)完成图中表示乙成绩变化情况的折线;
(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是什么?
(4)若选手乙再射击第6次,命中的成绩是8环,则选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会 .(填“变大”、“变小”或“不变”)
22.(8分)小山同学结合学习一次函数的经验和自己的思考,按以下方式探究函数的图象与性质,并尝试解决相关问题.
请将以下过程补充完整:
(1)判断这个函数的自变量x的取值范围是________________;
(2)补全表格:
(3)在平面直角坐标系中画出函数的图象:
(4)填空:当时,相应的函数解析式为___(用不含绝对值符合的式子表示);
(5)写出直线与函数的图象的交点坐标.
23.(8分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内再涂黑4个小正方形,使它们成为轴对称图形.
24.(8分)△ABC在平面直角坐标系中的位置如图所示,A,B,C三点在格点上.
(1)在图中作出△ABC关于y轴对称的△A1B1C1.
(2)求△A1B1C1的面积.
25.(10分)已知,如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高。求证:AD垂直平分EF。
26.(10分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.
(1)画出△ABC关于x轴的对称图形△A1B1C1;
(2)将△A1B1C1沿x轴方向向左平移4个单位得到△A2B2C2,画出△A2B2C2并写出顶点A2,B2,C2的坐标.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、D
3、B
4、C
5、B
6、D
7、C
8、B
9、C
10、D
二、填空题(每小题3分,共24分)
11、27
12、10
13、a<b<c
14、
15、6
16、y=-2x+1.
17、1
18、
三、解答题(共66分)
19、(1)60%;40%;(2)甲班比赛数据的中位数是100,乙班比赛数据的中位数是97;(3)46.8;103.2;(4)应把冠军奖状给甲班.
20、(1)M坐标(2,4);(2)b=8;(3)△AOM是等腰三角形,理由见解析
21、(1):8,8,9;(2)见解析;(3)两人的平均成绩相同,而甲的成绩的方差小,即甲的成绩较稳定;(4)变小.
22、(1)全体实数;(2)见解析;(3)见解析;(4);(5)
23、见解析
24、(1)见解析;(2)6.2
25、见解析
26、(1)见详解;(2)图见详解,点A2,B2,C2的坐标分别为(﹣4,﹣1),(﹣1,﹣2),(﹣3,﹣4).
班级
参加人数
中位数
方差
平均数
甲
55
149
191
135
乙
55
151
110
135
1号
2号
3号
4号
5号
总成绩
甲班
100
98
110
89
103
500
乙班
89
100
95
119
97
500
选手
平均数
众数
中位数
方差
甲
8
b
8
0.4
乙
α
9
c
3.2
2023-2024学年黄石市重点中学数学九上期末学业水平测试试题含答案: 这是一份2023-2024学年黄石市重点中学数学九上期末学业水平测试试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,已知,满足,则的值是等内容,欢迎下载使用。
2023-2024学年白山市重点中学数学九上期末学业水平测试试题含答案: 这是一份2023-2024学年白山市重点中学数学九上期末学业水平测试试题含答案,共8页。试卷主要包含了中,,是边上的高,若,则等于等内容,欢迎下载使用。
2023-2024学年中卫市重点中学数学八上期末学业水平测试试题含答案: 这是一份2023-2024学年中卫市重点中学数学八上期末学业水平测试试题含答案,共6页。试卷主要包含了考生要认真填写考场号和座位序号,计算的结果是等内容,欢迎下载使用。