所属成套资源:(新高考)高考数学一轮复习学案+分层提升 (2份打包,原卷版+教师版)
- (新高考)高考数学一轮复习学案+分层提升3.3《导数与函数的极值、最值》(2份打包,原卷版+教师版) 试卷 0 次下载
- (新高考)高考数学一轮复习学案+分层提升3.5《利用导数研究恒(能)成立问题》(2份打包,原卷版+教师版) 试卷 0 次下载
- (新高考)高考数学一轮复习学案+分层提升3.7《利用导数研究函数零点》(2份打包,原卷版+教师版) 试卷 0 次下载
- (新高考)高考数学一轮复习学案+分层提升3.8《隐零点与极值点偏移问题培优课》(2份打包,原卷版+教师版) 试卷 0 次下载
- (新高考)高考数学一轮复习学案+分层提升3.6《利用导数证明不等式》(2份打包,原卷版+教师版) 试卷 0 次下载
(新高考)高考数学一轮复习学案+分层提升3.2《导数与函数的单调性》(2份打包,原卷版+教师版)
展开
这是一份(新高考)高考数学一轮复习学案+分层提升3.2《导数与函数的单调性》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习32《导数与函数的单调性》原卷版doc、新高考高考数学一轮复习讲义+巩固练习32《导数与函数的单调性》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习32《导数与函数的单调性》教师版doc、新高考高考数学一轮复习讲义+巩固练习32《导数与函数的单调性》教师版pdf等4份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
1.结合实例,借助几何直观了解函数的单调性与导数的关系.
2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).
知识梳理
1.函数的单调性与导数的关系
2.利用导数判断函数单调性的步骤
第1步,确定函数的定义域;
第2步,求出导数f′(x)的零点;
第3步,用f′(x)的零点将f(x)的定义域划分为若干个区间,列表给出f′(x)在各区间上的正负,由此得出函数y=f(x)在定义域内的单调性.
常用结论
1.若函数f(x)在(a,b)上单调递增,则x∈(a,b)时,f′(x)≥0恒成立;若函数f(x)在(a,b)上单调递减,则x∈(a,b)时,f′(x)≤0恒成立.
2.若函数f(x)在(a,b)上存在单调递增区间,则x∈(a,b)时,f′(x)>0有解;若函数f(x)在(a,b)上存在单调递减区间,则x∈(a,b)时,f′(x)0,则f(x)在定义域上一定单调递增.( )
(4)函数f(x)=x﹣sin x在R上是增函数.( )
教材改编题
1.f′(x)是f(x)的导函数,若f′(x)的图象如图所示,则f(x)的图象可能是( )
2.函数f(x)=(x﹣2)ex的单调递增区间为________.
3.若函数f(x)=eq \f(1,3)x3﹣eq \f(3,2)x2+ax+4的单调递减区间为[﹣1,4],则实数a的值为________.
题型一 不含参数的函数的单调性
例1 (1)函数f(x)=x2﹣2ln x的单调递减区间是( )
A.(0,1) B.(1,+∞)
C.(﹣∞,1) D.(﹣1,1)
(2)若函数f(x)=eq \f(ln x+1,ex),则函数f(x)的单调递减区间为________.
教师备选
若幂函数f(x)的图象过点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),2),\f(1,2))),则函数g(x)=eq \f(fx,ex)的单调递增区间为( )
A.(0,2) B.(﹣∞,0)∪(2,+∞)
C.(﹣2,0) D.(﹣∞,﹣2)∪(0,+∞)
思维升华 确定不含参的函数的单调性,按照判断函数单调性的步骤即可,但应注意一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.
跟踪训练1
(1)已知定义在区间(0,π)上的函数f(x)=x+2cs x,则f(x)的单调递增区间为____________.
(2)函数f(x)=(x﹣1)ex﹣x2的单调递增区间为________,单调递减区间为________.
题型二 含参数的函数的单调性
例2 已知函数f(x)=eq \f(1,2)ax2﹣(a+1)x+ln x,a>0,试讨论函数y=f(x)的单调性.
延伸探究 若将本例中参数a的范围改为a∈R,其他条件不变,试讨论f(x)的单调性?
教师备选
讨论下列函数的单调性.
(1)f(x)=x﹣aln x; (2)g(x)=(x﹣a﹣1)ex﹣(x﹣a)2.
思维升华
(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.
(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点.
跟踪训练2 已知函数f(x)=x﹣eq \f(2,x)+a(2﹣ln x),a>0.讨论f(x)的单调性.
题型三 函数单调性的应用
命题点1 比较大小或解不等式
例3 (1)已知函数f(x)=xsin x,x∈R,则f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,5))),f(1),f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,3)))的大小关系为( )
A.f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,3)))>f(1)>f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,5))) B.f(1)>f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,3)))>f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,5)))
C.f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,5)))>f(1)>f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,3))) D.f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,3)))>f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,5)))>f(1)
(2)已知函数f(x)=ex﹣e﹣x﹣2x+1,则不等式f(2x﹣3)>1的解集为________.
命题点2 根据函数的单调性求参数的范围
例4 已知函数f(x)=eq \f(1,2)x2+2ax﹣ln x,若f(x)在区间eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,3),2))上单调递增,则实数a的取值范围为________.
延伸探究 在本例中,把“f(x)在区间eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,3),2))上单调递增”改为“f(x)在区间eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,3),2))上存在单调递增区间”,求a的取值范围.
教师备选
1.若函数f(x)=ex(sin x+a)在区间eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2),\f(π,2)))上单调递增,则实数a的取值范围是( )
A.(1,+∞) B.[2,+∞)
C.[1,+∞) D.(﹣eq \r(2),+∞)
2.若函数f(x)=ax3+x恰有3个单调区间,则a的取值范围为________.
思维升华 根据函数单调性求参数的一般思路
(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.
(2)f(x)为增(减)函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0(f′(x)≤0),且在(a,b)内的任一非空子区间上,f′(x)不恒为零,应注意此时式子中的等号不能省略,否则会漏解.
(3)函数在某个区间上存在单调区间可转化为不等式有解问题.
跟踪训练3
(1)已知定义域为R的连续函数f(x)的导函数为f′(x),且满足eq \f(f′x,mx-3)
相关试卷
这是一份(新高考)高考数学一轮复习学案+巩固提升练习3.2《导数与函数的单调性》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习32《导数与函数的单调性》原卷版doc、新高考高考数学一轮复习讲义+巩固练习32《导数与函数的单调性》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习32《导数与函数的单调性》教师版doc、新高考高考数学一轮复习讲义+巩固练习32《导数与函数的单调性》教师版pdf等4份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
这是一份(新高考)高考数学一轮复习学案+分层提升2.2《函数的单调性与最值》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习22《函数的单调性与最值》原卷版doc、新高考高考数学一轮复习讲义+巩固练习22《函数的单调性与最值》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习22《函数的单调性与最值》教师版doc、新高考高考数学一轮复习讲义+巩固练习22《函数的单调性与最值》教师版pdf等4份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
这是一份(新高考)高考数学一轮复习学案+分层提升3.6《利用导数证明不等式》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习36《利用导数证明不等式》原卷版doc、新高考高考数学一轮复习讲义+巩固练习36《利用导数证明不等式》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习36《利用导数证明不等式》教师版doc、新高考高考数学一轮复习讲义+巩固练习36《利用导数证明不等式》教师版pdf等4份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。