所属成套资源:(新高考)高考数学一轮复习学案+分层提升 (2份打包,原卷版+教师版)
(新高考)高考数学一轮复习学案+分层提升2.2《函数的单调性与最值》(2份打包,原卷版+教师版)
展开
这是一份(新高考)高考数学一轮复习学案+分层提升2.2《函数的单调性与最值》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习22《函数的单调性与最值》原卷版doc、新高考高考数学一轮复习讲义+巩固练习22《函数的单调性与最值》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习22《函数的单调性与最值》教师版doc、新高考高考数学一轮复习讲义+巩固练习22《函数的单调性与最值》教师版pdf等4份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
1.借助函数图象,会用数学符号语言表达函数的单调性、最值,理解实际意义.
2.掌握函数单调性的简单应用.
知识梳理
1.函数的单调性
(1)单调函数的定义
(2)单调区间的定义
如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.
2.函数的最值
常用结论
1.∀x1,x2∈D且x1≠x2,有eq \f(fx1-fx2,x1-x2)>0(0(0或f(x)0),证明:函数f(x)在(0,eq \r(a)]上单调递减,在[eq \r(a),+∞)上单调递增.
思维升华 确定函数单调性的四种方法
(1)定义法;(2)导数法;(3)图象法;(4)性质法.
跟踪训练1 (1)函数f(x)=ln(4+3x﹣x2)的单调递减区间是( )
A.eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,\f(3,2))) B.eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(3,2),+∞)) C.eq \b\lc\(\rc\](\a\vs4\al\c1(-1,\f(3,2))) D.eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(3,2),4))
(2)函数f(x)=|x﹣2|x的单调递减区间是________.
题型二 函数单调性的应用
命题点1 比较函数值的大小
例3 已知函数f(x)为R上的偶函数,对任意x1,x2∈(﹣∞,0),均有(x1﹣x2)[f(x1)﹣f(x2)]f(2)
C.若f(x)在(a,a+1)上单调递增,则a≤﹣1或a≥0
D.当x∈[﹣1,1]时,f(x)的值域为[1,2]
7.函数y=﹣x2+2|x|+1的单调递增区间为__________,单调递减区间为________.
8.已知函数f(x)=e|x﹣a|(a为常数),若f(x)在区间[1,+∞)上单调递增,则实数a的取值范围是________.
9.已知函数f(x)=ax﹣eq \f(1,ax)+eq \f(2,a)(a>0),且f(x)在(0,1]上的最大值为g(a),求g(a)的最小值.
10.已知函数f(x)=a﹣eq \f(2,2x+1).
(1)求f(0);
(2)探究f(x)的单调性,并证明你的结论;
(3)若f(x)为奇函数,求满足f(ax)0时,f(x)>﹣1.
(1)求f(0)的值,并证明f(x)在R上是增函数;
(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1﹣x)>4.
增函数
减函数
定义
一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D
当x1
相关试卷
这是一份(新高考)高考数学一轮复习学案+巩固提升练习3.3《导数与函数的极值、最值》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习33《导数与函数的极值最值》原卷版doc、新高考高考数学一轮复习讲义+巩固练习33《导数与函数的极值最值》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习33《导数与函数的极值最值》教师版doc、新高考高考数学一轮复习讲义+巩固练习33《导数与函数的极值最值》教师版pdf等4份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
这是一份(新高考)高考数学一轮复习学案+分层提升3.2《导数与函数的单调性》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习32《导数与函数的单调性》原卷版doc、新高考高考数学一轮复习讲义+巩固练习32《导数与函数的单调性》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习32《导数与函数的单调性》教师版doc、新高考高考数学一轮复习讲义+巩固练习32《导数与函数的单调性》教师版pdf等4份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
这是一份(新高考)高考数学一轮复习学案+分层提升3.3《导数与函数的极值、最值》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习33《导数与函数的极值最值》原卷版doc、新高考高考数学一轮复习讲义+巩固练习33《导数与函数的极值最值》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习33《导数与函数的极值最值》教师版doc、新高考高考数学一轮复习讲义+巩固练习33《导数与函数的极值最值》教师版pdf等4份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。