资料中包含下列文件,点击文件名可预览资料内容
还剩15页未读,
继续阅读
成套系列资料,整套一键下载
清单12 数列求和-2023-2024学年高二数学上学期期末常考题型+易错题(苏教版)
展开
清单12 数列求和(7个考点梳理+题型解读+提升训练)【知识导图】 【考点分布图】 【知识清单】一.公式法(1)等差数列的前n项和,推导方法:倒序相加法.(2)等比数列的前n项和,推导方法:乘公比,错位相减法.(3)一些常见的数列的前n项和:①;②;③; = 4 \* GB3 \* MERGEFORMAT ④二.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前项和即可用错位相减法求解.(4)倒序相加法:如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前项和即可用倒序相加法求解.三.常见的裂项技巧积累裂项模型1:等差型(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)积累裂项模型2:根式型(1)(2)(3)(4)(5)(6)积累裂项模型3:指数型(1)(2)(3)(4)(5)(6),设,易得,于是(7)积累裂项模型4:对数型积累裂项模型5:三角型(1)(2)(3)(4),则【考点精讲】考点1:公式法例1.(2023·河北邢台·高二校联考阶段练习)已知是各项均为正数的等比数列,.(1)求的通项公式;(2)设,求数列的前项和.例2.(2023·湖南·高二校联考期中)等差数列满足,,前项和为.(1)求数列的通项公式;(2)求的最大值.例3.(2023·浙江温州·高二乐清市知临中学校考期中)等差数列满足:首项为2,公差为是的前项和.(1)求数列的通项公式.(2)求数列的前项和.考点2:错位相减法例4.(2023·吉林长春·高二长春市解放大路学校校考期末)已知数列满足,且数列的前n项和.(1)求的通项公式;(2)求数列的前n项和.例5.(2023·河南开封·高二校考期中)已知等差数列的前项和.(1)求的通项公式;(2)记,求数列的前项和;例6.(2023·宁夏中卫·高二中宁一中校考阶段练习)已知数列,满足(1)证明:为等差数列,并求通项公式;(2)若,记前n项和为,对任意的正自然数n,不等式恒成立,求实数的范围.考点3:分组求和法例7.(2023·甘肃甘南·高二校考期中)已知递增的等差数列和等比数列满足.(1)求和的通项公式;(2)若,求的前项和.例8.(2023·北京·高二校联考期中)已知数列是等比数列,满足,,数列满足,,设,且是等差数列.(1)求数列和的通项公式;(2)求的通项公式和前项和.例9.(2023·黑龙江大庆·高三大庆实验中学校考阶段练习)已知数列,满足,,且是公差为1的等差数列,是公比为2的等比数列.(1)求,的通项公式;(2)求的前n项和.考点4:裂项相消法例10.(2023·重庆·高二重庆一中校考期中)已知数列中,,为等差数列,它的前n项和为,满足,.(1)求数列的通项公式;(2)若,数列的前n项和为,证明:.例11.(2023·甘肃酒泉·高二敦煌中学校联考期中)已知等差数列中,,且成等比数列.(1)求数列的通项公式;(2),求数列的前项和.例12.(2023·福建龙岩·高二校联考期中)已知数列为非零数列,且满足.(1)求及数列的通项公式;(2)若数列的前项和为,且满足,证明:.例13.(2023·甘肃甘南·高二校考期中)在数列中,且.(1)求的通项公式;(2)设,若的前项和为,证明:.考点5:倒序相加法例14.(2023·高二校考课时练习)在数列中,,则…的值是 .例15.(2023·安徽蚌埠·高二蚌埠二中校考阶段练习)已知,利用课本中推导等差数列前项和的公式的方法,可求得 .例16.(2023·江西萍乡·统考二模)已知函数,等差数列满足,则 .例17.(2023·高二课时练习)已知函数,数列的前项和为,点均在函数的图象上.(1)求数列的通项公式;(2)若函数,令,求数列的前2020项和.考点6:并项求和例18.(2023·江苏苏州·高三统考期中)已知为数列的前项和,,.(1)求的通项公式;(2)若,,求数列的前项和.例19.(2023·湖南长沙·高二长郡中学校考期中)已知数列各项均为正数,且,.(1)证明:为等差数列,并求出通项公式;(2)设,求.例20.(2023·江苏盐城·高二江苏省阜宁中学校考期中)设数列的前项和为,且.(1)求数列的通项公式;(2)若数列满足,,且,设,求数列的前项和.考点7:数列奇偶项求和例21.(2023·山东德州·高三德州市第一中学校考阶段练习)数列满足,.(1)求的通项公式;(2)设,求数列的前项和.例22.(2023·湖北襄阳·高二校考期末)已知数列满足,,.(1)求数列的通项公式;(2)求数列的前项和.例23.(2023·北京海淀·高一清华附中校考期末)已知首项为0的无穷等差数列中,,,成等比数列.(1)求的通项公式;(2)记,求数列的前2n项和.【提升练习】1.(2023·江西景德镇·高一统考期中)已知函数,则 .2.(2023·山东青岛·高二统考期中)已知非零数列满足.(1)证明:数列为等比数列;(2)求数列的前项和.3.(2023·甘肃临夏·高二校联考期中)已知数列,且.(1)求的通项公式;(2)设,若的前n项和为,求.4.(2023·江苏南通·高二校考期中)已知数列的前项和为,且.(1)求的通项公式;(2)求.5.(2023·安徽黄山·高二统考期末)已知是公差不为的等差数列的前项和,是与的等比中项,.(1)求数列的通项公式;(2)已知,求数列的前项和.6.(2023·全国·高二课堂例题)求数列,,,…,,…的前n项和.7.(2023·江苏盐城·高二校考期中)记为数列的前项和,为数列的前项和,若且.(1)证明:数列是等比数列;(2)若成立,求的最小值.8.(2023·甘肃临夏·高二校联考期中)已知是数列的前n项和,,.(1)求数列的通项公式;(2)若,求数列的前n项和.9.(2023·江苏镇江·高二江苏省镇江中学校考期中)已知数列的前项和为,满足.(1)求数列的通项公式;(2)记,是数列的前项和,若对任意的,不等式都成立,求实数的取值范围.10.(2023·福建宁德·高二福鼎市第一中学校考阶段练习)已知数列的前项和为.(1)求数列的通项公式;(2)设,数列的前项和为,证明:.11.(2023·福建漳州·高二校考期中)已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)令,求数列的前项和.(3),求数列的前项和.12.(2023·高二课时练习)已知,求.13.(2023·全国·高三专题练习)设是函数的图象上任意两点,且,已知点的横坐标为.(1)求证:点的纵坐标为定值;(2)若且求;14.(2023·甘肃白银·高二校考阶段练习)递增的等差数列中的前n项和为,且成等比数列,.(1)求数列的通项公式;(2)记,求数列的前40项的和.15.(2023·吉林长春·东北师大附中校考一模)已知各项均为正数的数列满足:,.(1)求数列的通项公式;(2)若,记数列的前项和为,求.16.(2023·福建龙岩·高二福建省连城县第一中学校考阶段练习)已知数列的前n项和为,满足,且是2与的等差中项.(1)求数列的通项公式;(2)若,求数列的前n项和.17.(2023·辽宁朝阳·高二建平县实验中学校考阶段练习)已知数列的前项和为,且,求的值.18.(2023·江苏苏州·高二统考期中)已知等差数列的前项和为,且满足,.(1)求数列的通项公式;(2)若数列满足,求数列的前项和.19.(2023·上海·高二校考期中)已知数列的前n项和为,,.(1)求数列的通项公式;(2)若数列,求的前n项和.20.(2023·甘肃定西·高二甘肃省临洮中学校考期中)已知数列是公差为1的等差数列,且,数列是等比数列,且,.(1)求和的通项公式;(2)设,(),求数列的前2n项和;(3)设(),求数列的前2n项和.21.(2023·重庆·高二统考期末)已知数列满足,,______,.从①,②这两个条件中任选一个填在横线上,并完成下面问题.(注:如果两个条件分别作答,按第一个解答计分).(1)写出,;(2)证明为等比数列,并求数列的通项公式;(3)求数列的前2n项和.
相关资料
更多