山西省侯马市2023-2024学年数学八上期末联考模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.已知直角三角形纸片的两条直角边长分别为和,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( )
A.B.
C.D.
2.若分式的值为零,则x的值为( )
A.±3B.3
C.﹣3D.以上答案均不正确
3.已知图中的两个三角形全等,则∠1等于( )
A.72°B.60°C.50°D.58°
4.已知直线与的交点的坐标为(1,),则方程组的解是( )
A.B.C.D.
5.若3n+3n+3n=,则n=( )
A.﹣3B.﹣2C.﹣1D.0
6.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是( )
A.SSSB.SASC.AASD.ASA
7.《个人所得税》规定:全月总收入不超过3500元的免征个人工资薪金所得税,超过3500元,超过的部分(记为x)按阶梯征税,税率如下:
若某人工资薪金税前为7000元,则税后工资薪金为( )
A.245B.350C.6650D.6755
8.如果分式的值为0,则的值为( )
A.B.C.D.不存在
9.若等腰三角形的周长为,一边为,则腰长为( )
A.B.C.16或12D.以上都不对
10.若n边形的内角和等于外角和的3倍,则边数n为( )
A.n=6B.n=7
C.n=8D.n=9
二、填空题(每小题3分,共24分)
11.若是一个完全平方式,则m的值是__________.
12.已知一个三角形的两边长分别为2和5,第三边的取值范围为______.
13.已知点A与B关于x轴对称,若点A坐标为(﹣3,1),则点B的坐标为____.
14.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_____度.
15.如图,AB=AD,∠1=∠2,如果增加一个条件_____,那么△ABC≌△ADE.
16.如图,△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于D,交AB于E.若BD+AC=3a,则AC=_________.(用含a的式子表示)
17.如图,直线,∠1=42°,∠2=30°,则∠3=______度.
18.若m>n, 则m-n_____0 . (填“>”“<”“=”)
三、解答题(共66分)
19.(10分)一列快车从甲地始往乙地,一列慢车从乙地始往甲地,慢车的速度是快车速度的,两车同时出 发.设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系.根据图象解决以下问题:
(1)甲、乙两地之间的距离为_______;点的坐标为__________;
(2)求线段的函数关系式,并写出自变量的取值范围;
(3)若第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车追上慢车.求第二列快车比第一列快车晚出发多少小时?
20.(6分)解答下列各题
(1)如图1,方格纸中的每个小方格都是边长为1个单位长的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).
①作出△ABC关于x轴对称的△A1B1C1;
②如果P点的纵坐标为3,且P点到直线AA₁的距离为5,请直接写出点P的坐标.
(2)我国是世界上严重缺水的国家之一为了倡导“节约用水,从我做起”,小丽同学在她家所在小区的200住户中,随机调查了10个家庭在2019年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图2
①求这10个样本数据的平均数;
②以上面的样本平均数为依据,自来水公司按2019年该小区户月均用水量下达了2020年的用水计划(超计划要执行阶梯式标准收费)请计算该小区2020年的计划用水量.
21.(6分)如图,BC⊥CA,BC=CA,DC⊥CE,DC=CE,直线BD与AE交于点F,交AC于点G,连接CF.
(1)求证:△ACE≌△BCD;
(2)求证:BF⊥AE;
(3)请判断∠CFE与∠CAB的大小关系并说明理由.
22.(8分)如图,以正方形的中心O为顶点作一个直角,直角的两边分别交正方形的两边BC、DC于E、F点,问:
(1)△BOE与△COF有什么关系?证明你的结论(提示:正方形的对角线把正方形分成全等的四个等腰直角三角形,即正方形的对角线垂直相等且相互平分);
(2)若正方形的边长为2,四边形EOFC的面积为多少?
23.(8分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?
24.(8分)如图,,,于点.求证:.
25.(10分)化简,并求值,其中a与2、3构成△ABC的三边,且a为整数.
26.(10分)如图,在与中,点,,,在同一直线上,已知,,,求证:.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、D
4、A
5、A
6、D
7、D
8、A
9、C
10、C
二、填空题(每小题3分,共24分)
11、1或-1
12、.
13、 (﹣3,﹣1)
14、1
15、AC=AE
16、a
17、1
18、
三、解答题(共66分)
19、(1)(15,1200) (2).(3)3.7h
20、(1)①详见解析;②点P的坐标为(﹣4,3)或(6,3);(2)①6.8t;②该小区2020年的计划用水量应为16320t.
21、(1)见解析;(2)见解析;(3)∠CFE=∠CAB,见解析
22、(1)△BOE≌△COF,证明见解析;(2)1
23、原计划每天种树40棵.
24、证明见解析.
25、,1.
26、证明见解析
级数
x
税率
1
不超过1500元的部分
3%
2
超过1500元至4500元的部分
10%
3
超过4500元至9000元的部分
20%
山西省临汾侯马市2023-2024学年八年级上学期期末数学试题(含答案): 这是一份山西省临汾侯马市2023-2024学年八年级上学期期末数学试题(含答案),共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年山西省侯马市九年级数学第一学期期末监测模拟试题含答案: 这是一份2023-2024学年山西省侯马市九年级数学第一学期期末监测模拟试题含答案,共7页。试卷主要包含了下列事件中,必然发生的为,关于x的一元二次方程x2﹣,已知是关于的反比例函数,则等内容,欢迎下载使用。
山西省太原市名校2023-2024学年数学八上期末联考模拟试题含答案: 这是一份山西省太原市名校2023-2024学年数学八上期末联考模拟试题含答案,共7页。试卷主要包含了下列运算正确的是,已知实数a满足,那么的值是等内容,欢迎下载使用。